Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD có tọa độ các đỉnh là A(1,1,1),B(1,2,1),C(1,1,2) và D(2,2,1). Khi đó mặt cầu ngoại tiếp tứ diện ABCD có phương trình là
A.\[{x^2} + {y^2} + {z^2} - 3x - 3y - 3z - 6 = 0.\]
B. \[{x^2} + {y^2} + {z^2} - 3x - 3y - 3z + 6 = 0.\]
C. \[{x^2} + {y^2} + {z^2} - 3x + 3y - 3z + 6 = 0.\]
D. \[{x^2} + {y^2} + {z^2} - 3x - 3y - 3z + 12 = 0.\]
- Thử từng tọa độ các điểm A,B,C,D vào các phương trình cho trong các đáp án A,B,C,D
+ Thay A(1,1,1) vào phương trình cho ở đáp án A có
\[{1^2} + {1^2} + {1^2} - 3 - 3 - 3 - 6 \ne 0\]Loại A
Thay A(1,1,1) vào phương trình cho ở đáp án B có
\[{1^2} + {1^2} + {1^2} - 3 - 3 - 3 + 6 = 0\]
Thay B(1,2,1) vào phương trình cho ở đáp án B có
\[{1^2} + {2^2} + {1^2} - 3 - 6 - 3 + 6 = 0\]
Thay C(1,1,2) vào phương trình cho ở đáp án B có
\[{1^2} + {1^2} + {2^2} - 3 - 3 - 6 + 6 = 0\]
Thay D(2,2,1) vào phương trình cho ở đáp án B có
\[{2^2} + {2^2} + {1^2} - 6 - 6 - 3 + 6 = 0\]
Vậy A,B,C,D thỏa mãn phương trình cho ở đáp án B.
Đáp án cần chọn là: B
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;−2;3). Gọi I là hình chiếu vuông góc của M trên trục Ox. Phương trình nào dưới đây là phương trình của mặt cầu tâm I, bán kính IM?
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình mặt cầu đi qua ba điểm M(2;3;3),N(2;−1;−1),P(−2;−1;3) và có tâm thuộc mặt phẳng (α):2x+3y−z+2=0.
Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của m để phương trình \[{x^2} + {y^2} + {z^2} - 2x - 2y - 4z + m = 0\] là phương trình của một mặt cầu.
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(2,1,−1) và B(1,0,1). Mặt cầu đi qua hai điểm A,B và có tâm thuộc trục Oy có đường kính là
Tìm tâm và bán kính của mặt cầu sau: \[{x^2} + {y^2} + {z^2} - 8x + 2y + 1 = 0\]
Trong không gian Oxyz, cho hai điểm A(1;2;3),B(4;−7;−9), tập hợp các điểm M thỏa mãn \[2M{A^2} + M{B^2} = 165\] là mặt cầu có tâm I(a;b;c) và bán kính R. Giá trị biểu thức \[T = {a^2} + {b^2} + {c^2} + {R^2}\] bằng:
Trong không gian Oxyz cho mặt cầu \[(S):{x^2} + {y^2} + {z^2} - 2x + 4y + 2z - 3 = 0\]. Tính bán kính R của mặt cầu (S).
Trong không gian với hệ tọa độ Oxyz, mặt cầu (S) có tâm I(1,2,−3) và đi qua điểm A(1,0,4) có phương trình là
Trong không gian với hệ trục tọa độ Oxyz, cho các phương trình sau, phương trình nào không phải là phương trình của mặt cầu?
Trong không gian với hệ tọa độ Oxyz, tìm tập tất cả giá trị của tham số m để mặt cầu (S) có phương trình \[{x^2} + {y^2} + {z^2} - 2x + 2my - 4z + m + 5 = 0\] đi qua điểm A(1;1;1).
Trong không gian với hệ tọa độ Oxyz, tìm tọa độ tâm I và bán kính R của mặt cầu \[{(x - 1)^2} + {(y + 2)^2} + {(z - 4)^2} = 20\].
Trong không gian Oxyz cho hai điểm A(−3,1,2),B(1,−1,0). Phương trình mặt cầu nhận AB làm đường kính có tọa độ tâm là:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \[d:\frac{x}{1} = \frac{{y - 1}}{2} = \frac{{z + 1}}{{ - 1}}\;\] và điểm A(5,4,−2). Phương trình mặt cầu đi qua điểm A và có tâm là giao điểm của d với mặt phẳng (Oxy) là
Cho mặt cầu \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 5} \right)^2} = 16\] và điểm A(1;2;−1). Tìm tọa độ điểm M thuộc mặt cầu sao cho độ dài đoạn AM là lớn nhất.