Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;−1) và đi qua điểm A(2;1;2). Mặt phẳng nào dưới đây tiếp xúc với (S) tại A?
A.\[x + y - 3z - 8 = 0\]
B. \[x - y - 3z + 3 = 0\]
C. \[x + y + 3z - 9 = 0\]
D. \[x + y - 3z + 3 = 0\]
Ta có\[\overrightarrow {AI} = \left( {1;1; - 3} \right)\]
Vì (P) tiếp xúc với (S) tại A.
\[ \Leftrightarrow IA \bot (P) \Rightarrow \overrightarrow {IA} = \overrightarrow {{n_P}} \]
Do đó, phương trình mặt phẳng (P) có dạng\[x + y - 3z + d = 0\left( * \right)\]
Mặt khác, vì \[A \in (P)\] nên ta có\[2 + 1 - 3.2 + d = 0 \Leftrightarrow d = 3\]
Vậy ta có\[(P):x + y - 3z + 3 = 0\]
Đáp án cần chọn là: D
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(2;1;−1) và tiếp xúc với mặt phẳng (α) có phương trình 2x−2y−z+3=0. Bán kính của (S) là:
Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) đi qua hai điểm A(1;2;1);B(3;2;3), có tâm thuộc mặt phẳng (P):x−y−3=0 , đồng thời có bán kính nhỏ nhất, hãy tính bán kính R của mặt cầu (S)?
Viết phương trình mặt cầu có tâm I(−1;2;3) và tiếp xúc với mặt phẳng (P):2x−y−2z+1=0
Trong không gian với hệ tọa độ Oxyz cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 2} \right)^2} = 4\] và 2 đường thẳng \({\Delta _1}:\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 1 - t}\\{z = t}\end{array}} \right.\)và \({\Delta _2}:\frac{{x - 1}}{{ - 1}} = \frac{y}{1} = \frac{z}{{ - 1}}\). Một phương trình mặt phẳng (P) song song với \[{\Delta _1},{\Delta _2}\;\] và tiếp xúc với mặt cầu (S) là:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;−1;0),B(1;1;−1) và mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0\]. Mặt phẳng (P) đi qua A,B và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là:
Trong không gian với hệ tọa độ Oxyz , phương trình nào dưới đây là phương trình mặt cầu tâm I(−3;2;−4) và tiếp xúc với mặt phẳng (Oxz)?
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{x^2} + {y^2} + {z^2} + 2x - 4y + 6z + 5 = 0\]. Tiếp diện của (S) tại điểm M(−1;2;0) có phương trình là:
Mặt cầu (S) có tâm I(−1;2;−5) cắt mặt phẳng \[(P):2x - 2y - z + 10 = 0\;\]theo thiết diện là hình tròn có diện tích \[3\pi \]. Phương trình của (S) là:
Trong không gian vớ hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;−1) và đi qua điểm A(2;1;2). Mặt phẳng nào dưới đây tiếp xúc với (S) tại A?
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 9\;\]và mặt phẳng \[(P):2x - 2y + z + 3 = 0\]. Gọi M(a;b;c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Khi đó:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x - 2)^2} + {(y + 1)^2} + {(z - 4)^2} = 10\] và mặt phẳng \[(P): - 2x + y + \sqrt 5 z + 9 = 0\;\]. Gọi (Q) là tiếp diện của (S) tại M(5;0;4) . Tính góc giữa (P) và (Q).
Trong không gian Oxyz, xác định tọa độ tâm I của đường tròn giao tuyến của mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 64\;\]với mặt phẳng\[\left( \alpha \right):2x + 2y + z + 10 = 0\].
Trong không gian với hệ tọa độ Oxyz,(α) cắt mặt cầu (S) tâm I(1;−3;3) theo giao tuyến là đường tròn tâm H(2;0;1) , bán kính r=2 . Phương trình (S) là:
Trong không gian Oxyz, cho đường thẳng \[\Delta :\frac{{x - 1}}{{ - 2}} = \frac{y}{2} = \frac{{z - 2}}{1}\;\] và mặt phẳng \[(P):2x - y + z - 3 = 0\]. Gọi (S) là mặt cầu có tâm I thuộc Δ và tiếp xúc với (P) tại điểm H(1;−1;0). Phương trình của (S) là:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{x^2} + {y^2} + {z^2} - 8x + 2y + 2z - 3 = 0\;\]và đường thẳng \[\Delta :\frac{{x - 1}}{3} = \frac{y}{{ - 2}} = \frac{{z + 2}}{{ - 1}}\]. Mặt phẳng \[\left( \alpha \right)\;\]vuông góc với \[\Delta \] và cắt (S) theo giao tuyến là đường tròn (C) có bán kính lớn nhất. Phương trình \[\left( \alpha \right)\;\]là: