Gọi z1 và z2 là hai nghiệm phức của phương trình z2 + z + 6 = 0. Khi đó z1 + z2 + z1z2 bằng:
A. -5;
B. -7;
C. 7;
Đáp án đúng là: D
Vì phương trình z2 + z + 6 = 0 có hai nghiệm z1 và z2.
Theo định lí Vi-et, ta có: .
Do đó: z1 + z2 + z1z2 = -1 + 6 = 5.
Cho hàm số f (x) = mx4 + 2(m - 1)x2 với m là tham số thực. Nếu thì bằng
Trong không gian Oxyz, cho điểm A(2; 1; -1). Gọi (P) là mặt phẳng chứa trục Oy sao cho khoảng cách từ A đến (P) là lớn nhất. Phương trình của (P) là:
Có bao nhiêu số nguyên thuộc tập xác định của hàm số y = log [(6 - x)(x + 2)]?
Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn [40; 60]. Xác suất để chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục bằng
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, BC = 2a và AA' = 3a (tham khảo hình bên). Khoảng cách giữa hai đường thẳng BD và A'C' bằng
Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên.
Số điểm cực trị của hàm số đã cho là:
Cho hàm số f (x) = ax4 + bx2 + c có đồ thị là đường cong trong hình bên.
Số nghiệm thực của phương trình f (x) = 1 là
Cho cấp số nhân (un) với u1 = 1 và u2 = 2. Công bội của cấp số nhân đã cho là:
Cho hình nón có góc ở đỉnh bằng 120° và chiều cao bằng 1. Gọi (S) là mặt cầu đi qua đỉnh và chứa đường tròn đáy của hình nón đã cho. Diện tích của (S) bằng
Tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình:
Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?