Xét tất cả các số thực x, y sao cho với mọi số thực dương a. Giá trị lớn nhất của biểu thức P = x2 + y2 + 4x - 3y bằng
A.
B.
C. 24;
Đáp án đúng là: C
Ta có:
Û (9 - y2)log7 49 ³ (4x - log7 a2)log7 a
Û 2(9 - y2) ³ 2(2x - log7 a).log7 a (1)
Đặt t = log7 a, khi a > 0 thì t Î ℝ, (1) trở thành t2 - 2x.t + 9 - y2 ³ 0 (2)
(1) đúng với mọi a > 0 Û (2) đúng với mọi t Î ℝ
Û D¢ = x2 - 9 + y2 £ 0 Û x2 + y2 £ 9
+) Xét (4x - 3y)2 £ (16 + 9)(x2 + y2)
Þ (4x - 3y)2 £ 225 Þ 4x - 3y £ 15
+) Suy ra P = x2 + y2 + 4x - 3y £ 9 + 15 = 24 đẳng thức xảy ra khi
Vậy GTLN của P bằng 24.
Cho hàm số f (x) = mx4 + 2(m - 1)x2 với m là tham số thực. Nếu thì bằng
Trong không gian Oxyz, cho điểm A(2; 1; -1). Gọi (P) là mặt phẳng chứa trục Oy sao cho khoảng cách từ A đến (P) là lớn nhất. Phương trình của (P) là:
Có bao nhiêu số nguyên thuộc tập xác định của hàm số y = log [(6 - x)(x + 2)]?
Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn [40; 60]. Xác suất để chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục bằng
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, BC = 2a và AA' = 3a (tham khảo hình bên). Khoảng cách giữa hai đường thẳng BD và A'C' bằng
Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên.
Số điểm cực trị của hàm số đã cho là:
Cho hàm số f (x) = ax4 + bx2 + c có đồ thị là đường cong trong hình bên.
Số nghiệm thực của phương trình f (x) = 1 là
Cho cấp số nhân (un) với u1 = 1 và u2 = 2. Công bội của cấp số nhân đã cho là:
Tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình:
Cho hình nón có góc ở đỉnh bằng 120° và chiều cao bằng 1. Gọi (S) là mặt cầu đi qua đỉnh và chứa đường tròn đáy của hình nón đã cho. Diện tích của (S) bằng
Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?