Giải phương trình
A.
B.
C.
D.
ĐKXĐ:
Đối chiếu điều kiện ta có:
Do kϵZ nên: là số nguyên.
Mà 1 + 2m luôn lẻ nên không chia hết cho 2 với mọi m.
Do đó, nếu thì k phải là số nguyên chẵn.
⇒k chẵn, đặt k = 2n, khi đó ta có
Vì 1 + 2k lẻ, 2 + 4m chẵn nên 1 + 2k ≠ 2 + 4m luôn đúng với mọi k, m ∈ Z.
Vậy nghiệm của phương trình đã cho là:
Đáp án cần chọn là: B
Gọi m, M lần lượt là GTNN và GTLN của hàm số . Khi đó giá trị của biểu thức m + M bằng
Với giá trị nào của m thì phương trình có nhiều hơn 1 nghiệm trên ?
Số vị trí biểu diễn các nghiệm của phương trình 4sin2 x − 4sinx – 3 = 0 trên đường tròn lượng giác là: