Hướng dẫn giải:
Đáp án đúng là: D.
Xét hàm số y = 2x2 có tập xác định D = ℝ
Cho x1, x2 tùy ý thuộc D sao cho x1 > x2 ta có:
f(x1) – f(x2) = 2x12 – 2x22 = 2(x12 – x22) = 2(x1 – x2)(x1 + x2)
Ta có: x1 > x2 nên x1 – x2 > 0
Khi x1, x2 thuộc khoảng (0; +∞) thì x1 + x2 > 0 nên f(x1) – f(x2) > 0 hay f(x1) > f(x2). Do đó, hàm số đồng biến trên khoảng (0; +∞).
Khi x1, x2 thuộc khoảng (–∞; 0) thì x1 + x2 < 0 nên f(x1) – f(x2) < 0 hay f(x1) < f(x2). Do đó, hàm số nghịch biến trên khoảng (–∞; 0).
Cho hàm số có đồ thị như hình dưới:
Khẳng định nào dưới đây là đúng ?
Cho hàm số có đồ thị như hình dưới:
Khẳng định nào dưới đây là đúng ?
Cho hàm số có đồ thị như hình dưới:
Khẳng định nào dưới đây là sai ?
Cho hàm số có đồ thị như hình dưới:
Xét tính đồng biến, nghịch biến của hàm số trên các khoảng (–3; –2), (–2; 5), (5; 7).