Hướng dẫn giải:
Đáp án đúng là: D.
Xét hàm số y = x có tập xác định D = ℝ\{–1}.
+) Cho x1, x2 tùy ý thuộc (–∞; –1) sao cho x1 > x2 ta có:
\(f({x_1}) - f({x_2}) = \frac{4}{{{x_1} + 1}} - \frac{4}{{{x_2} + 1}}\)
\( = \frac{{4({x_2} + 1) - 4({x_1} + 1)}}{{({x_1} + 1)({x_2} + 1)}}\)
\( = \frac{{4{x_2} - 4{x_1}}}{{({x_1} + 1)({x_2} + 1)}}\)
\( = \frac{{4({x_2} - {x_1})}}{{({x_1} + 1)({x_2} + 1)}}\)
Ta có: Khi x1, x2 tùy ý thuộc (–∞; –1) thì x1 + 1 < 0, x2 + 1 < 0
Mà x1 > x2 nên x2 – x1 < 0
Do đó, f(x1) – f(x2) < 0 hay f(x1) < f(x2).
Vậy hàm số \(f(x) = \frac{4}{{x + 1}}\) nghịch biến trên khoảng (–∞; –1).
+) Cho x1, x2 tùy ý thuộc (–1; +∞) sao cho x1 > x2 ta có:
\(f({x_1}) - f({x_2}) = \frac{4}{{{x_1} + 1}} - \frac{4}{{{x_2} + 1}}\)
\( = \frac{{4({x_2} + 1) - 4({x_1} + 1)}}{{({x_1} + 1)({x_2} + 1)}}\)
\( = \frac{{4{x_2} - 4{x_1}}}{{({x_1} + 1)({x_2} + 1)}}\)
\( = \frac{{4({x_2} - {x_1})}}{{({x_1} + 1)({x_2} + 1)}}\)
Ta có: Khi x1, x2 tùy ý thuộc (–1; +∞) thì x1 + 1 > 0, x2 + 1 > 0
Mà x1 > x2 nên x2 – x1 < 0
Do đó, f(x1) – f(x2) < 0 hay f(x1) < f(x2).
Vậy hàm số \(f(x) = \frac{4}{{x + 1}}\) nghịch biến trên khoảng (–1; +∞).
Cho hàm số có đồ thị như hình dưới:
Khẳng định nào dưới đây là đúng ?
Cho hàm số có đồ thị như hình dưới:
Khẳng định nào dưới đây là đúng ?
Cho hàm số có đồ thị như hình dưới:
Khẳng định nào dưới đây là sai ?
Cho hàm số có đồ thị như hình dưới:
Xét tính đồng biến, nghịch biến của hàm số trên các khoảng (–3; –2), (–2; 5), (5; 7).