Cho bất phương trình x2 – (2m + 2)x + m2 + 2m < 0. Tìm m để bất phương trình nghiệm đúng với mọi x thuộc đoạn [0; 1]
A. – 1 ≤ m ≤ 0;
B. m > 0 hoặc m < - 1;
C. – 1 < m < 0;
D. m < – 2 hoặc m > 1.
Đáp án đúng là: C
Ta có: a = 1 > 0. Do đó, x2 – (2m + 2)x + m2 + 2m < 0 mọi x thuộc đoạn [0; 1]
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\{x_1} < 0 < 1 < {x_2}\end{array} \right. \Leftrightarrow \)\(\left\{ \begin{array}{l}{\left[ { - \left( {m + 1} \right)} \right]^2} - \left( {{m^2} + 2m} \right) > 0\\af\left( 0 \right) < 0\\af\left( 1 \right) < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}1 > 0\\{m^2} + 2m < 0\\{m^2} - 1 < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 2 < m < 0\\ - 1 < m < 1\end{array} \right.\)\( \Leftrightarrow \) –1 < m < 0.
Vậy với –1 < m < 0 thì x2 – (2m + 2)x + m2 + 2m < 0 mọi x thuộc đoạn [0; 1].
Gọi S là tập nghiệm của bất phương trình x2 – 8x + 7 ≥ 0. Trong các tập hợp sau, tập nào không là tập con của S?
Tìm tất cả các giá trị của m để bất phương trình x2 – x + m ≤ 0 vô nghiệm?
Tìm tất cả các giá trị của m để bất phương trình mx2 – x + m ≥ 0 với mọi x \( \in \) ℝ
Các giá trị m để bất phương trình x2 – (m + 2)x + 8m + 1 < 0 luôn có nghiệm
Cho phương trình x2 – 2x – m = 0. Tìm tất cả các giá trị của m để phương trình có 2 nghiệm thỏa mãn x1 < x2 < 2.
Cho bất phương trình mx2 – (2m – 1)x + m + 1 < 0(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.
Xác định m để (m2 + 2)x2 – 2(m – 2)x + 2 > 0 với mọi x \( \in \) ℝ