Gọi x (học sinh), y (học sinh) lần lượt là số học sinh dự thi của trường A và trường B (x, y > 0).
Trường A có tỉ lệ đậu là 80%, trường B có tỉ lệ đậu là 90% và có 84% tổng thí sinh dự thi của hai trường thi đậu, ta có phương trình:
80%x + 90%y = 84%(x + y)
Û 0,8x + 0,9y = 0,84x + 0,84y
Û −0,04x + 0,06y = 0 (1)
Theo đề bài, tất cả 630 học sinh đậu vào lớp 10 công lập, đạt tỉ lệ 84% tổng số học sinh dự thi của hai trường, nên ta có phương trình:
84%(x + y) = 630
Û 0,84x + 0,84y = 630 (2)
Từ (1) và (2) ta lập được hệ phương trình:
Vậy trường A có 450 học sinh dự thi và trường B có 300 học sinh dự thi.
Cho hàm số y = −x2 có đồ thị là P và hàm số y = 2x – 3 có đồ thị là (D).
a) Vẽ đồ thị hàm số (P) và (D) trên cùng một mặt phẳng tọa độ.
b) Tìm tọa độ giao điểm của (P) và (D) bằng phép tính.
Cho ∆ABC nhọn (AB < AC) nội tiếp đường tròn (O), có các đường cao BE và CF cắt nhau tại H. Vẽ đường kính AK của đường tròn (O).
a) Chứng minh tứ giác BFEC nội tiếp đường tròn.
b) Gọi D là giao điểm của AH và BC. Chứng minh AE.AC = AH.AD.
c) Gọi M là hình chiếu của D lên BE. Qua M vẽ đường thẳng vuông góc với AK, đường thẳng này cắt CF tại N. Chứng minh: AK ^ EF và tứ giác HNDM nội tiếp.
Một vật rơi ở độ cao so với mặt đất là 100 m. Quãng đường chuyển động s (mét) của vật rơi phụ thuộc vào thời gian t (giây) được biểu diễn bởi công thức s = 4t2.
a) Sau 2 giây, vật này cách mặt đất bao nhiêu mét?
b) Hỏi sau bao lâu vật này tiếp đất?
ho phương trình: 2x2 – 3x – 8 = 0 có hai nghiệm x1; x2.
a) Không giải phương trình, hãy tính S = x1 + x2 và P = x1x2.
b) Tính: