Cho ABC có H là trực tâm. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M. Tính số đo ;
Xét tứ giác BHCK có
MB = MC (gt)
HM = MK ( H đối xứng mới K qua M)
=> Tứ giác BHCK là hình bình hành
=> BH // CK; CH // BK (1)
Ta có H là trực tâm của ABC
=> (2)
Từ (1) và (2) suy ra
=>
Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Gọi O là điểm bất kỳ nằm trong tam giác ABC. Vẽ M đối xứng với O qua D, vẽ N đối xứng với O qua E. Chứng minh rằng MNCB là hình bình hành.
Cho hình thang ABCD (AD//BC). Gọi M, N lần lượt là trung điểm của các cạnh AB, CD; E là một điểm bất kỳ trên cạnh đáy AD và I, K là điểm đối xứng với E lần lượt qua M và N. Chứng minh rằng độ dài IK không phụ thuộc vào vị trí của điểm E
Cho , điểm A nằm trong góc đó, Vẽ điểm B đối xứng với A qua Ox, C đối xứng với A qua Oy.
a) Chứng minh rằng OB = OC