Từ các chữ số 0; 1; 2; 3; 4; 5, có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và chia hết cho 9?
A. 16;
B. 18;
C. 20;
Hướng dẫn giải
Đáp án đúng là: A
Gọi là số cần tìm, với a, b, c ∈ {0; 1; 2; 3; 4; 5}.
Vì nên tổng các chữ số a + b + c ⋮ 9.
Khi đó a; b; c là bộ số (0; 4; 5), (2; 3; 4) hoặc (1; 3; 5).
Trường hợp 1: a; b; c là bộ số (0; 4; 5).
Vị trí a có 2 cách chọn (số 4 hoặc số 5).
Vị trí b, c có 2! = 2 cách chọn từ 2 chữ số còn lại.
Do đó theo quy tắc nhân, ta có tất cả 2.2 = 4 số.
Trường hợp 2: a; b; c là bộ số (2; 3; 4) thì có 3! = 6 số.
Trường hợp 3: a; b; c là bộ số (1; 3; 5) thì có 3! = 6 số.
Vậy theo quy tắc cộng, ta có tất cả 4 + 6 + 6 = 16 số.
Ta chọn phương án A.
Một hội đồng gồm 5 nam và 4 nữ được bầu vào một ban quản trị gồm 4 người. Biết rằng ban quản trị có ít nhất một nam và một nữ. Số cách bầu chọn là:
Cho tập hợp A = {0; 1; 2; 3; 4; 5; 6; 7}. Hỏi từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau sao cho một trong 3 chữ số đầu tiên có chữ số 1?