Cho ba điểm A, B, C phân biệt và không thẳng hàng, gọi M là điểm thỏa mãn . Giá trị của x + y bằng
A. x + y = 1;
Đáp án đúng là: B
Do ba điểm A, B, C phân biệt và không thẳng hàng nên và không cùng phương.
Khi đó tồn tại các số thực x, y sao cho .
Theo bài ta có
Suy ra x + y – 1 = 1 nên x + y = 2.
Vậy ta chọn phương án B.
Cho tam giác ABC, gọi M là điểm bất kì thỏa mãn . Hỏi có bao nhiêu điểm M thỏa mãn đẳng thức trên?
Cho hình chữ nhật ABCD, điểm M bất kì và số thực k dương. Biết điểm M thỏa mãn đẳng thức . Quỹ tích của điểm M là
Cho tam giác đều ABC cạnh bằng a, G là trọng tâm tam giác ABC. Tập hợp các điểm M thỏa mãn là
Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức là đường tròn cố định có bán kính R. Tính bán kính R theo a.