Cho tam giác ABC có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0 . Toạ độ điểm A là:
A.
B.
C.
D.
Hướng dẫn giải
Đáp án đúng là: B
Ta có:
Đường cao BH vuông góc với AC nên đường thẳng AC nhận làm vectơ chỉ phương hay nhận làm vectơ pháp tuyến.
Do đó phương đường thẳng AC đi qua điểm C(–1; 2) và có vectơ pháp tuyến là: 1(x + 1) + 1(y – 2) = 0 ⇔ x + y – 1 = 0.
Điểm A là giao điểm của hai đường thẳng AC và AN nên toạ độ điểm A thoả mãn hệ phương trình sau:
Cho đường thẳng d1: 3x + 4y + 12 = 0 và d2 : . Tìm giá trị của tham số a để góc giữa hai đường thẳng d1 và d2 bằng 45°.
Cho ba đường thẳng d1: 2x + y – 1 = 0, d2 : x + 2y + 1 = 0; d3: mx – y – 7 = 0. Tìm giá trị của tham số m để 3 đường thẳng trên đồng quy.
Cho tam giác ABC có phương trình các cạnh AB: 3x – y + 4 = 0, AC : x + 2y – 4 = 0, BC: 2x + 3y – 2 = 0. Khi đó diện tích tam giác ABC là:
Cho tam giác ABC có A(2; -1); B(2; -2) và C(0; -1). Bán kính đường tròn nội tiếp tam giác ABC là: