Cho tam giác ABC có phương trình các cạnh AB: 3x – y + 4 = 0, AC : x + 2y – 4 = 0, BC: 2x + 3y – 2 = 0. Khi đó diện tích tam giác ABC là:
A.
B.
C.
D.
Hướng dẫn giải
Đáp án đúng là: B
Vì AC ∩ AB = A nên toạ độ điểm A thoả mãn hệ phương trình sau:
Tương tự ta có: B và C (−8; 6)
Ta có: SABC = .d(A; BC).BC
=
=
= = .
Cho đường thẳng d1: 3x + 4y + 12 = 0 và d2 : . Tìm giá trị của tham số a để góc giữa hai đường thẳng d1 và d2 bằng 45°.
Cho ba đường thẳng d1: 2x + y – 1 = 0, d2 : x + 2y + 1 = 0; d3: mx – y – 7 = 0. Tìm giá trị của tham số m để 3 đường thẳng trên đồng quy.
Cho tam giác ABC có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0 . Toạ độ điểm A là:
Cho tam giác ABC có A(2; -1); B(2; -2) và C(0; -1). Bán kính đường tròn nội tiếp tam giác ABC là: