Cho d là đường thẳng có phương trình tham số như sau: . Hỏi điểm nào dưới đây thuộc đường thẳng d?
A. A(2; 4);
B. B(3; 5);
C. C(10; 1);
Hướng dẫn giải
Đáp án đúng là: B
Thay điểm A(2; 4) vào phương trình tham số ta có: (vô lí).
Vậy A(2; 4) không thuộc đường thẳng d.
Tương tự điểm C(10; 1) và điểm D(3; ‒10) không thuộc đường thẳng d.
Thay điểm B(3; 5) vào phương trình tham số ta có: .
Vậy B(3; 5) thuộc đường thẳng d.
Trong mặt phẳng tọa độ Oxy, đường thẳng d có vectơ pháp tuyến là Hỏi trong các vectơ sau đây, vectơ nào có thể là vectơ chỉ phương của đường thẳng d?
Phương trình đường thẳng d có vectơ chỉ phương và đi qua điểm M(3; 4) là
Trong mặt phẳng tọa độ Oxy, cho G là trọng tâm tam giác ABC. Tính góc giữa 2 đường thẳng AG và AC, biết A(1; 2), B(2; 5) và M(3; 4) là trung điểm của BC.
Tọa độ giao điểm M của hai đường thẳng x – 3y + 1 = 0 và 2x + 3y – 10 = 0 là:
Cho hai đường thẳng d: 7x + 2y – 1 = 0 và D: .
Vị trí tương đối của hai đường thẳng là:
Trong hệ tọa độ Oxy cho điểm M(3; 4) và đường thẳng d có phương trình: x + 4y – 10 = 0. Khoảng cách nhỏ nhất từ điểm M đến một điểm bất kì nằm trên đường thẳng d bằng: