Khoảng cách giữa hai đường thẳng d: 7x + y – 3 = 0 và ∆: là:
A.
B. 15;
C. 9;
Hướng dẫn giải
Đáp án đúng là: A
Ta có đường thẳng ∆ đi qua điểm A(– 2; 2) và có vectơ chỉ phương là
Do đó ∆ có vectơ pháp tuyến là .
Đường thẳng d có vectơ pháp tuyến là .
Thay tọa độ điểm A(– 2; 2) vào phương trình d: 7x + y – 3 = 0 ta có:
7.(–2) + 2 – 3 = –15 ≠ 0.
Do đó đường thẳng d không đi qua điểm A(– 2; 2).
Vậy hai đường thằng d và ∆ song song với nhau.
Khi đó .
Trong mặt phẳng tọa độ Oxy, đường thẳng d có vectơ pháp tuyến là Hỏi trong các vectơ sau đây, vectơ nào có thể là vectơ chỉ phương của đường thẳng d?
Phương trình đường thẳng d có vectơ chỉ phương và đi qua điểm M(3; 4) là
Cho d là đường thẳng có phương trình tham số như sau: . Hỏi điểm nào dưới đây thuộc đường thẳng d?
Trong mặt phẳng tọa độ Oxy, cho G là trọng tâm tam giác ABC. Tính góc giữa 2 đường thẳng AG và AC, biết A(1; 2), B(2; 5) và M(3; 4) là trung điểm của BC.
Tọa độ giao điểm M của hai đường thẳng x – 3y + 1 = 0 và 2x + 3y – 10 = 0 là:
Cho hai đường thẳng d: 7x + 2y – 1 = 0 và D: .
Vị trí tương đối của hai đường thẳng là:
Trong hệ tọa độ Oxy cho điểm M(3; 4) và đường thẳng d có phương trình: x + 4y – 10 = 0. Khoảng cách nhỏ nhất từ điểm M đến một điểm bất kì nằm trên đường thẳng d bằng: