Phương trình (m + 2) x2 – 3x + 2m – 3 = 0 có hai nghiệm trái dấu khi và chỉ khi
Đáp án đúng là: C
Phương trình (m + 2) x2 – 3x + 2m – 3 = 0 có hai nghiệm trái dấu khi và chỉ khi
ac < 0
⇔ (m + 2)(2m – 3) < 0
⇔ 2m2 – 3m + 4m – 6 < 0
⇔ 2m2 + m – 6 < 0
Xét tam thức f(x) = 2m2 + m – 6 có:
a = 2 > 0
Δ = 12 – 4.1.(–6) = 25 > 0
f(x) = 2m2 + m – 6 = 0 có hai nghiệm là: x1 = –2; x2 = .
Do đó, 2m2 + m – 6 < 0 ⇔ –2 < x <
Vậy phương trình (m + 2) x2 – 3x + 2m – 3 = 0 có hai nghiệm trái dấu khi và chỉ khi .
Tìm m để bất phương trình sau (m + 2)2 – 2mx + m2 + 2m ≤ 0 có nghiệm.
Tìm tham số m để bất phương trình: f(x) = (m2 + 1)x2 + (2m – 1)x – 5 < 0 có nghiệm đúng với mọi x thuộc khoảng (−1; 1).
Bất phương trình mx2 – (2m – 1)x + m + 1 < 0 vô nghiệm khi và chỉ khi