Cho tam giác đều ABC có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt lấy các điểm N, M, P sao cho \(BN = \frac{a}{3},CM = \frac{{2a}}{3},AP = x\left( {0 < x < a} \right)\). Tìm giá trị của x theo a để đường thẳng AN vuông góc với đường thẳng PM.
Do BN = \(\frac{a}{3}\) và BC = a nên BN = \(\frac{1}{3}\)BC.
Mà N thuộc cạnh BC nên vectơ \(\overrightarrow {BN} \) và \(\overrightarrow {BC} \) cùng hướng. Do đó, \(\overrightarrow {BN} = \frac{1}{3}\overrightarrow {BC} \).
Ta có \(\overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {BN} = \overrightarrow {AB} + \frac{1}{3}(\overrightarrow {AC} - \overrightarrow {AB} ) = \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).
Lại có: CM = \(\frac{{2a}}{3}\), mà AC = a và M thuộc cạnh AC nên AM = \(a - \frac{{2a}}{3} = \frac{a}{3} = \frac{1}{3}AC\).
Suy ra \(\overrightarrow {AM} = \frac{1}{3}\overrightarrow {AC} \).
Và AP = x (0 < x < a), AB = a, P thuộc cạnh AB nên AP = \(\frac{x}{a}AB\).
Suy ra \(\overrightarrow {AP} = \frac{x}{a}\overrightarrow {AB} \).
Do đó, ta có: \(\overrightarrow {PM} = \overrightarrow {AM} - \overrightarrow {AP} = \frac{1}{3}\overrightarrow {AC} - \frac{x}{a}\overrightarrow {AB} \).
Khi đó, \(AN \bot PM \Leftrightarrow \overrightarrow {AN} \cdot \overrightarrow {PM} = 0\)
\( \Leftrightarrow \left( {\frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} } \right) \cdot \left( {\frac{1}{3}\overrightarrow {AC} - \frac{x}{a}\overrightarrow {AB} } \right) = 0\)
\( \Leftrightarrow \frac{2}{9}\overrightarrow {AB} \cdot \overrightarrow {AC} - \frac{{2x}}{{3a}}{\overrightarrow {AB} ^2} - \frac{x}{{3a}}\overrightarrow {AB} \cdot \overrightarrow {AC} + \frac{1}{9}{\overrightarrow {AC} ^2} = 0\)
\( \Leftrightarrow \left( {\frac{2}{9} - \frac{x}{{3a}}} \right)\overrightarrow {AB} \cdot \overrightarrow {AC} - \frac{{2x}}{{3a}}.{a^2} + \frac{1}{9}.{a^2} = 0\) (do AB = AC = a)
\( \Leftrightarrow \left( {\frac{2}{9} - \frac{x}{{3a}}} \right) \cdot \left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {AC} } \right| \cdot cos\left( {\overrightarrow {AB} ,\,\,\overrightarrow {AC} } \right) - \frac{{2xa}}{3} + \frac{{{a^2}}}{9} = 0\)
\( \Leftrightarrow \left( {\frac{2}{9} - \frac{x}{{3a}}} \right) \cdot a \cdot a \cdot cos60^\circ - \frac{{2xa}}{3} + \frac{{{a^2}}}{9} = 0\)
\( \Leftrightarrow \frac{{2a - 3x}}{{9a}} \cdot \frac{{{a^2}}}{2} - \frac{{2xa}}{3} + \frac{{{a^2}}}{9} = 0\)
\( \Leftrightarrow \frac{{\left( {2a - 3x} \right)a}}{{18}} - \frac{{12xa}}{{18}} + \frac{{2{a^2}}}{{18}} = 0\)
\( \Leftrightarrow \frac{{2{a^2} - 3xa - 12xa + 2{a^2}}}{{18}} = 0\)
⇔ 4a2 – 15xa = 0
⇔ a(4a – 15x) = 0
⇔ 4a – 15x = 0 (do a > 0).
⇔ \(x = \frac{{4a}}{{15}}\).
Vậy \(x = \frac{{4a}}{{15}}\) thì đường thẳng AN vuông góc với đường thẳng PM.
Cho hình chữ nhật ABCD có AB = 4 cm, AD = 3 cm. Tính \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right|\).
Một cảnh sát giao thông ghi lại tốc độ (đơn vị: km/h) của 25 xe qua trạm như sau:
20 |
41 |
41 |
80 |
40 |
52 |
52 |
52 |
60 |
55 |
60 |
60 |
62 |
60 |
55 |
60 |
55 |
90 |
70 |
35 |
40 |
30 |
30 |
80 |
25 |
|
Tìm các số liệu bất thường (nếu có) trong mẫu số liệu trên.
Cho lục giác đều ABCDEF tâm O như hình vẽ bên. Vectơ \(\overrightarrow {OB} \) cùng phương với vectơ nào sau đây?
Cho G là trọng tâm của tam giác ABC và điểm M bất kỳ. Đẳng thức nào sau đây đúng?
Trong mặt phẳng tọa độ Oxy cho ba điểm A(2; 1), B(1; 10) và điểm C(m; 2m – 17). Tất cả các giá trị của tham số m sao cho AB vuông góc với OC là
Cho tam giác đều ABC cạnh 4. Vectơ \( - \frac{1}{2}\overrightarrow {BC} \) có độ dài là.
Cho tam giác ABC cân tại A có \[\widehat A = 120^\circ \]. Khi đó sin B bằng:
Cho mẫu số liệu sau:
5; 6; 12; 2; 5; 17; 23; 15; 10.
Tính khoảng tứ phân vị của mẫu số liệu trên.
Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) khác vectơ-không. Khẳng định nào sau đây là đúng?
Cho hình thoi ABCD. Vectơ – không có điểm đầu là A thì nó có điểm cuối là: