Đường thẳng ∆: 12x – 7y + 5 = 0 không đi qua điểm nào sau đây?
Hướng dẫn giải
Đáp án đúng là: A
⦁ Thế tọa độ điểm M(1; 1) vào phương trình ∆, ta được: 12.1 – 7.1 + 5 = 10 ≠ 0.
Suy ra M(1; 1) ∉ ∆.
⦁ Thế tọa độ điểm N(–1; –1) vào phương trình ∆, ta được: 12.(–1) – 7.(–1) + 5 = 0.
Suy ra N(–1; –1) ∈ ∆.
⦁ Thế tọa độ điểm \(P\left( { - \frac{5}{{12}};0} \right)\) vào phương trình ∆, ta được: \(12.\left( { - \frac{5}{{12}}} \right) - 7.0 + 5 = 0\).
Suy ra \(P\left( { - \frac{5}{{12}};0} \right) \in \Delta \).
⦁ Thế tọa độ điểm \(Q\left( {1;\frac{{17}}{7}} \right)\) vào phương trình ∆, ta được: \(12.1 - 7.\frac{{17}}{7} + 5 = 0\).
Suy ra \(Q\left( {1;\frac{{17}}{7}} \right) \in \Delta \).
Vậy ta chọn phương án A.
Cho phương trình tham số của đường thẳng d: \(\left\{ \begin{array}{l}x = 5 + t\\y = - 9 - 2t\end{array} \right.\). Trong các phương trình sau, phương trình nào là phương trình tổng quát của d?
Phương trình tổng quát của đường thẳng đi qua hai điểm A(–2; 4) và B(1; 0) là:
Cho tam giác ABC có tọa độ 3 đỉnh A(4; 5), B(–6; –1), C(1; 1). Phương trình đường cao BH của tam giác ABC là:
Cho tam giác ABC có tọa độ ba đỉnh A(1; 4), B(3; –1), C(6; 2). Phương trình đường trung tuyến AM của tam giác ABC là:
Cho đường thẳng ∆: \(\left\{ \begin{array}{l}x = - 3 + 5t\\y = 2 - 4t\end{array} \right.\) và các điểm M(32; 50), N(–28; 22), P(17; –14), Q(–3; –2). Các điểm nằm trên ∆ là:
Cho đường thẳng d: 3x + 5y – 15 = 0. Phương trình nào sau đây không phải là một phương trình khác của d?
Phương trình tham số của đường thẳng ∆ đi qua điểm H(1; 3) và có vectơ pháp tuyến \(\vec n = \left( {2;5} \right)\) là: