Hướng dẫn giải
Ta có: \[\int {\frac{{4{x^2} + \sqrt x - 6}}{x}dx} = \int {\left( {4x + \frac{1}{{\sqrt x }} - \frac{6}{x}} \right)dx} = 2{x^2} + 2\sqrt x - 6\ln \left| x \right| + C\]
Chọn C.
Gọi \[F\left( x \right)\] là nguyên hàm của hàm số \[f\left( x \right) = \frac{{{{\cos }^5}x}}{{1 - \sin x}}\], với \[x \ne \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\] và thỏa mãn \[F\left( \pi \right) = \frac{3}{4}\]. Giá trị của \[F\left( { - \frac{\pi }{2}} \right)\] là: