Hướng dẫn giải
Ta có: \[\begin{array}{l}\int {x{{\left( {x + 2} \right)}^{2019}}dx} = \int {\left[ {\left( {x + 2} \right) - 2} \right]{{\left( {x + 2} \right)}^{2019}}dx} \\ = \int {{{\left( {x + 2} \right)}^{2020}}dx} - 2\int {{{\left( {x + 2} \right)}^{2019}}dx} = \frac{{{{\left( {x + 2} \right)}^{2021}}}}{{2021}} - \frac{{{{\left( {x + 2} \right)}^{2020}}}}{{1010}} + C\end{array}\]
Chọn D.
Gọi \[F\left( x \right)\] là nguyên hàm của hàm số \[f\left( x \right) = \frac{{{{\cos }^5}x}}{{1 - \sin x}}\], với \[x \ne \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\] và thỏa mãn \[F\left( \pi \right) = \frac{3}{4}\]. Giá trị của \[F\left( { - \frac{\pi }{2}} \right)\] là: