Hướng dẫn giải
Ta có: \[\begin{array}{l}\int {\frac{1}{{\sqrt {x + 2} + \sqrt {x - 2} }}dx} = \int {\frac{{\sqrt {x + 2} - \sqrt {x - 2} }}{4}dx} \\ = \frac{1}{4}\left[ {\frac{2}{3}\left( {x + 2} \right)\sqrt {x + 2} - \frac{2}{3}\left( {x - 2} \right)\sqrt {x - 2} } \right] + C = \frac{1}{6}\left( {x + 2} \right)\sqrt {x + 2} - \frac{1}{6}\left( {x - 2} \right)\sqrt {x - 2} + C\end{array}\]
Chọn A.
Gọi \[F\left( x \right)\] là nguyên hàm của hàm số \[f\left( x \right) = \frac{{{{\cos }^5}x}}{{1 - \sin x}}\], với \[x \ne \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\] và thỏa mãn \[F\left( \pi \right) = \frac{3}{4}\]. Giá trị của \[F\left( { - \frac{\pi }{2}} \right)\] là: