Thứ năm, 09/01/2025
IMG-LOGO

Câu hỏi:

22/07/2024 98

Tìm nguyên hàm của hàm số \[f\left( x \right) = \cos 3x.\cos 2x\] trên \[\mathbb{R}\] ta thu được kết quả:

A. \[\int {f\left( x \right)dx} = \frac{{\sin 5x}}{{10}} + \frac{{\sin x}}{2} + C\]

Đáp án chính xác

B. \[\int {f\left( x \right)dx} = \frac{{\sin 5x}}{5} + \sin x + C\]

C. \[\int {f\left( x \right)dx} = \frac{1}{6}\sin 3x.\sin 2x + C\]

D. \[\int {f\left( x \right)dx} = \frac{{\sin 5x}}{{10}} - \frac{{\sin x}}{2} + C\]

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Ta viết: \[f\left( x \right) = \frac{1}{2}\left( {\cos 5x + \cos x} \right)\].

Khi đó: \[\int {f\left( x \right)dx} = \frac{{\sin 5x}}{{10}} + \frac{{\sin x}}{2} + C\]

Chọn A.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi \[F\left( x \right)\] là nguyên hàm của hàm số \[f\left( x \right) = \frac{{{{\cos }^5}x}}{{1 - \sin x}}\], với \[x \ne \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\] và thỏa mãn \[F\left( \pi \right) = \frac{3}{4}\]. Giá trị của \[F\left( { - \frac{\pi }{2}} \right)\] là:

Xem đáp án » 05/01/2023 174

Câu 2:

Kết quả nguyên hàm \[I = \int {x.\ln xdx} \] là:

Xem đáp án » 05/01/2023 172

Câu 3:

Nguyên hàm của hàm số \[f\left( x \right) = \frac{{5x - 13}}{{{x^2} - 5x + 6}}\] là:

Xem đáp án » 05/01/2023 167

Câu 4:

Họ nguyên hàm của hàm số \[f\left( x \right) = 3{x^2} + {3^x}\] là

Xem đáp án » 05/01/2023 162

Câu 5:

Nguyên hàm của hàm số \[f\left( x \right) = 5{x^4} + \frac{2}{{{x^2}}} - \sqrt[3]{x}\] là:

Xem đáp án » 05/01/2023 155

Câu 6:

Nguyên hàm của hàm số \[f\left( x \right) = \frac{{{2^x} - 1}}{{{e^x}}}\] là:

Xem đáp án » 05/01/2023 155

Câu 7:

Nguyên hàm của hàm số \[\int {{{\tan }^3}xdx} \] là:

Xem đáp án » 05/01/2023 152

Câu 8:

Cho hàm số \[f\left( x \right)\] xác định trên \[\mathbb{R}\backslash \left\{ { - 1;1} \right\}\], thỏa mãn \[f'\left( x \right) = \frac{2}{{{x^2} - 1}};\;f\left( { - 3} \right) + f\left( 3 \right) = 2\ln 2\] và \[f\left( { - \frac{1}{2}} \right) + f\left( {\frac{1}{2}} \right) = 0\]. Giá trị của biểu thức \[P = f\left( { - 2} \right) + f\left( 0 \right) + f\left( 4 \right)\] là:

Xem đáp án » 05/01/2023 151

Câu 9:

Cho hàm số \[f\left( x \right)\] xác định trên \[\mathbb{R}\backslash \left\{ {\frac{1}{2}} \right\}\] thỏa mãn \[f'\left( x \right) = \frac{2}{{2x - 1}};\;f\left( 0 \right) = 1\] và \[f\left( 1 \right) = 2\]. Giá trị của biểu thức \[P = f\left( { - 1} \right) + f\left( 3 \right)\] là:

Xem đáp án » 05/01/2023 150

Câu 10:

Nguyên hàm \[S = \int {{x^3}\sqrt {{x^2} + 9} dx} \] là:

Xem đáp án » 05/01/2023 150

Câu 11:

Kết quả nguyên hàm \[\int {\ln \left( {x + 2019} \right)dx} \] là:

Xem đáp án » 05/01/2023 147

Câu 12:

Một vận động viên điền kinh chạy với gia tốc \[a\left( t \right) = - \frac{1}{{24}}{t^3} + \frac{5}{{16}}{t^2}\left( {m/{s^2}} \right)\], trong đó t là khoảng thời gian tính từ lúc xuất phát. Hỏi vào thời điểm 5 (s) sau khi xuất phát thì vận tốc của vận động viên là bao nhiêu?

Xem đáp án » 05/01/2023 146

Câu 13:

Nguyên hàm của hàm số \[\int {\left( {2\cos x - 3\cos 5x} \right)dx} \] là:

Xem đáp án » 05/01/2023 145

Câu 14:

Một ô tô đang chạy với vận tốc 10 (m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc \[v\left( t \right) = 10 - 2t\left( {m/s} \right)\], trong đó t là khoảng thời gian tính bằng giây kể từ lúc đạp phanh. Tính quãng đường ô tô di chuyển được trong 8 giây cuối cùng.

Xem đáp án » 05/01/2023 145

Câu 15:

Một nhà khoa học tự chế tên lửa và phóng tên lửa từ mặt đất với vận tốc ban đầu là 20 m/s. Giả sử bỏ qua sức cản của gió, tên lửa chỉ chịu tác động của trọng lực. Hỏi sau 2s thì tên lửa đạt đến tốc độ là bao nhiêu?

Xem đáp án » 05/01/2023 145

Câu hỏi mới nhất

Xem thêm »
Xem thêm »