Hướng dẫn giải
Ta có: \[\begin{array}{l}{\cos ^4}2x = {\left( {\frac{{1 + \cos 4x}}{2}} \right)^2} = \frac{1}{4}\left( {1 + 2\cos 4x + {{\cos }^2}4x} \right)\\\;\;\;\;\;\;\;\;\;\;\;\; = \frac{1}{4}\left( {1 + 2\cos 4x + \frac{{1 + \cos 8x}}{2}} \right) = \frac{1}{8}\left( {3 + 4\cos 4x + \cos 8x} \right)\end{array}\]
Do đó \[F\left( x \right) = \frac{1}{8}\int {\left( {3 + 4\cos 4x + \cos 8x} \right)dx} = \frac{1}{8}\left( {3x + \sin 4x + \frac{1}{8}\sin 8x} \right) + C\]
Mà \[F\left( 0 \right) = 2019\] nên ta có \[C = 2019\].
Vậy \[F\left( x \right) = \frac{1}{8}\left( {3x + \sin 4x + \frac{1}{8}\sin 8x} \right) + 2019\].
Do đó \[F\left( {\frac{\pi }{8}} \right) = \frac{{3\pi + 129224}}{{64}}\]
Chọn C.
Gọi \[F\left( x \right)\] là nguyên hàm của hàm số \[f\left( x \right) = \frac{{{{\cos }^5}x}}{{1 - \sin x}}\], với \[x \ne \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\] và thỏa mãn \[F\left( \pi \right) = \frac{3}{4}\]. Giá trị của \[F\left( { - \frac{\pi }{2}} \right)\] là: