Hướng dẫn giải
Đặt \[u = 1 + 3\cos x\], ta có \[du = - 3\sin xdx\] hay \[2\sin xdx = - \frac{2}{3}du\].
Khi đó \[M = - \frac{2}{3}\int {\frac{1}{u}du} = - \frac{2}{3}\ln \left| u \right| + C\]
Vậy \[M = \int {\frac{{2\sin x}}{{1 + 3\cos x}}dx} = - \frac{2}{3}\ln \left| {1 + 3\cos x} \right| + C\]
Chọn C.
Gọi \[F\left( x \right)\] là nguyên hàm của hàm số \[f\left( x \right) = \frac{{{{\cos }^5}x}}{{1 - \sin x}}\], với \[x \ne \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\] và thỏa mãn \[F\left( \pi \right) = \frac{3}{4}\]. Giá trị của \[F\left( { - \frac{\pi }{2}} \right)\] là: