Hướng dẫn giải
Ta có: \[T = \int {\frac{1}{{x\sqrt {\ln x + 1} }}dx} = \int {\frac{1}{{\sqrt {\ln x + 1} }}d\left( {\ln x + 1} \right)} = 2\sqrt {\ln x + 1} + C\].
Chọn B.
Gọi \[F\left( x \right)\] là nguyên hàm của hàm số \[f\left( x \right) = \frac{{{{\cos }^5}x}}{{1 - \sin x}}\], với \[x \ne \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\] và thỏa mãn \[F\left( \pi \right) = \frac{3}{4}\]. Giá trị của \[F\left( { - \frac{\pi }{2}} \right)\] là: