Hướng dẫn giải
Vì \[x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) + 1 = \left( {{x^2} + 3x} \right)\left( {{x^2} + 3x + 2} \right) + 1 = {\left[ {\left( {{x^2} + 3x} \right) + 1} \right]^2}\] nên ta đặt \[u = {x^2} + 3x\], khi đó \[du = \left( {2x + 3} \right)dx\]
Nguyên hàm ban đầu trở thành \[\int {\frac{{du}}{{{{\left( {u + 1} \right)}^2}}} = - \frac{1}{{u + 1}} + C} \].
Suy ra \[\int {\frac{{\left( {2x + 3} \right)dx}}{{x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) + 1}}} = - \frac{1}{{{x^2} + 3x + 1}} + C\]
Vậy \[g\left( x \right) = {x^2} + 3x + 1;\;g\left( x \right) = 0 \Leftrightarrow {x^2} + 3x + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - 3 + \sqrt 5 }}{2}\\x = \frac{{ - 3 - \sqrt 5 }}{2}\end{array} \right.\].
Do đó \[S = \left\{ {\frac{{ - 3 + \sqrt 5 }}{2};\frac{{ - 3 - \sqrt 5 }}{2}} \right\}\].
Tổng giá trị các phần tử của S bằng \[ - 3\].
Chọn C.
Gọi \[F\left( x \right)\] là nguyên hàm của hàm số \[f\left( x \right) = \frac{{{{\cos }^5}x}}{{1 - \sin x}}\], với \[x \ne \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\] và thỏa mãn \[F\left( \pi \right) = \frac{3}{4}\]. Giá trị của \[F\left( { - \frac{\pi }{2}} \right)\] là: