Hướng dẫn giải
Đặt \[x = \cos t,t < 0 < \pi \Rightarrow dx = - \sin t.dt\].
Khi đó \[I = - \int {\frac{{\sin t.dt}}{{{{\sin }^3}t}}dt} = - \int {\frac{{dt}}{{{{\sin }^2}t}}} = \cot t + C\] hay \[I = \frac{x}{{\sqrt {1 - {x^2}} }} + C\]
Vậy \[\int {\frac{1}{{\sqrt {{{\left( {1 - {x^2}} \right)}^3}} }}dx} = \frac{x}{{\sqrt {1 - {x^2}} }} + C\]
Chọn B.
Gọi \[F\left( x \right)\] là nguyên hàm của hàm số \[f\left( x \right) = \frac{{{{\cos }^5}x}}{{1 - \sin x}}\], với \[x \ne \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\] và thỏa mãn \[F\left( \pi \right) = \frac{3}{4}\]. Giá trị của \[F\left( { - \frac{\pi }{2}} \right)\] là: