Hướng dẫn giải
Đặt \[\left\{ \begin{array}{l}u = \ln \left( {\sin x + 2\cos x} \right)\\dv = \frac{{dx}}{{{{\cos }^2}x}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \frac{{\cos x - 2\sin x}}{{\sin x + 2\cos x}}dx\\v = \tan x + 2 = \frac{{\sin x + 2\cos x}}{{\cos x}}\end{array} \right.\]
Khi đó \[\begin{array}{l}I = \left( {\tan x + 2} \right)\ln \left( {\sin x + 2\cos x} \right) - \int {\frac{{\cos x - 2\sin x}}{{\cos x}}dx} \\\;\; = \left( {\tan x + 2} \right)\ln \left( {\sin x + 2\cos x} \right) - x - 2\ln \left| {\cos x} \right| + C\end{array}\]
Chọn B.
Gọi \[F\left( x \right)\] là nguyên hàm của hàm số \[f\left( x \right) = \frac{{{{\cos }^5}x}}{{1 - \sin x}}\], với \[x \ne \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\] và thỏa mãn \[F\left( \pi \right) = \frac{3}{4}\]. Giá trị của \[F\left( { - \frac{\pi }{2}} \right)\] là: