IMG-LOGO

Câu hỏi:

08/07/2024 109

Nguyên hàm \[I = \int {{e^x}\sin xdx} \] là:

A. \[2{e^x}\left( {\sin x + \cos x} \right) + C\]

B. \[2{e^x}\left( {\sin x - \cos x} \right) + C\]

C. \[\frac{1}{2}{e^x}\left( {\sin x - \cos x} \right) + C\]

Đáp án chính xác

D. \[\frac{1}{2}{e^x}\left( {\sin x + \cos x} \right) + C\]

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Phân tích: Sự tồn tại của hàm số mũ và lượng giác trong cùng một nguyên hàm sẽ rất dễ gây cho người học sự nhầm lẫn, nếu ta sẽ không biết điểm dừng thì có thể sẽ bị lạc vào vòng luẩn quẩn. Ở đây, để tìm được kết quả thì ta phải từng phần hai lần như trong ví dụ 3. Tuy nhiên, với sơ đồ đường chéo thì sao? Khi nào sẽ dừng lại?

Media VietJack

Khi đó, ta sẽ có thể kết luận \[I = {e^x}\sin x - {e^x}\cos x - \int {{e^x}\sin xdx} \].

Hay \[2I = {e^x}\sin x - {e^x}.\cos x\]. Vậy \[I = \frac{1}{2}{e^x}\left( {\sin x - \cos x} \right) + C\]

Chọn C.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi \[F\left( x \right)\] là nguyên hàm của hàm số \[f\left( x \right) = \frac{{{{\cos }^5}x}}{{1 - \sin x}}\], với \[x \ne \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\] và thỏa mãn \[F\left( \pi \right) = \frac{3}{4}\]. Giá trị của \[F\left( { - \frac{\pi }{2}} \right)\] là:

Xem đáp án » 05/01/2023 175

Câu 2:

Kết quả nguyên hàm \[I = \int {x.\ln xdx} \] là:

Xem đáp án » 05/01/2023 173

Câu 3:

Nguyên hàm của hàm số \[f\left( x \right) = \frac{{5x - 13}}{{{x^2} - 5x + 6}}\] là:

Xem đáp án » 05/01/2023 168

Câu 4:

Họ nguyên hàm của hàm số \[f\left( x \right) = 3{x^2} + {3^x}\] là

Xem đáp án » 05/01/2023 163

Câu 5:

Nguyên hàm của hàm số \[f\left( x \right) = 5{x^4} + \frac{2}{{{x^2}}} - \sqrt[3]{x}\] là:

Xem đáp án » 05/01/2023 155

Câu 6:

Nguyên hàm của hàm số \[f\left( x \right) = \frac{{{2^x} - 1}}{{{e^x}}}\] là:

Xem đáp án » 05/01/2023 155

Câu 7:

Nguyên hàm của hàm số \[\int {{{\tan }^3}xdx} \] là:

Xem đáp án » 05/01/2023 153

Câu 8:

Cho hàm số \[f\left( x \right)\] xác định trên \[\mathbb{R}\backslash \left\{ { - 1;1} \right\}\], thỏa mãn \[f'\left( x \right) = \frac{2}{{{x^2} - 1}};\;f\left( { - 3} \right) + f\left( 3 \right) = 2\ln 2\] và \[f\left( { - \frac{1}{2}} \right) + f\left( {\frac{1}{2}} \right) = 0\]. Giá trị của biểu thức \[P = f\left( { - 2} \right) + f\left( 0 \right) + f\left( 4 \right)\] là:

Xem đáp án » 05/01/2023 152

Câu 9:

Cho hàm số \[f\left( x \right)\] xác định trên \[\mathbb{R}\backslash \left\{ {\frac{1}{2}} \right\}\] thỏa mãn \[f'\left( x \right) = \frac{2}{{2x - 1}};\;f\left( 0 \right) = 1\] và \[f\left( 1 \right) = 2\]. Giá trị của biểu thức \[P = f\left( { - 1} \right) + f\left( 3 \right)\] là:

Xem đáp án » 05/01/2023 151

Câu 10:

Nguyên hàm \[S = \int {{x^3}\sqrt {{x^2} + 9} dx} \] là:

Xem đáp án » 05/01/2023 151

Câu 11:

Kết quả nguyên hàm \[\int {\ln \left( {x + 2019} \right)dx} \] là:

Xem đáp án » 05/01/2023 148

Câu 12:

Một vận động viên điền kinh chạy với gia tốc \[a\left( t \right) = - \frac{1}{{24}}{t^3} + \frac{5}{{16}}{t^2}\left( {m/{s^2}} \right)\], trong đó t là khoảng thời gian tính từ lúc xuất phát. Hỏi vào thời điểm 5 (s) sau khi xuất phát thì vận tốc của vận động viên là bao nhiêu?

Xem đáp án » 05/01/2023 147

Câu 13:

Một nhà khoa học tự chế tên lửa và phóng tên lửa từ mặt đất với vận tốc ban đầu là 20 m/s. Giả sử bỏ qua sức cản của gió, tên lửa chỉ chịu tác động của trọng lực. Hỏi sau 2s thì tên lửa đạt đến tốc độ là bao nhiêu?

Xem đáp án » 05/01/2023 146

Câu 14:

Nguyên hàm của hàm số \[\int {\left( {2\cos x - 3\cos 5x} \right)dx} \] là:

Xem đáp án » 05/01/2023 145

Câu 15:

Một ô tô đang chạy với vận tốc 10 (m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc \[v\left( t \right) = 10 - 2t\left( {m/s} \right)\], trong đó t là khoảng thời gian tính bằng giây kể từ lúc đạp phanh. Tính quãng đường ô tô di chuyển được trong 8 giây cuối cùng.

Xem đáp án » 05/01/2023 145

Câu hỏi mới nhất

Xem thêm »
Xem thêm »