Hướng dẫn giải
Ta có \(\int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}dx = 7} \) (1).
\(\int\limits_0^1 {{x^6}dx} = \frac{1}{7} \Rightarrow \int\limits_0^1 {49{x^6}dx} = 7\) (2).
và \(\int\limits_0^1 {14{x^3}.f'\left( x \right)dx = - 14} \) (3).
Cộng hai vế (1), (2) và (3) suy ra
\(\int\limits_0^1 {{{\left[ {f'\left( x \right) + 7{x^3}} \right]}^2}dx = 0} \) mà \({\left[ {f'\left( x \right) + 7{x^3}} \right]^2} \ge 0\)
\( \Rightarrow f'\left( x \right) = - 7{x^3}.\)
Hay \(f\left( x \right) = - \frac{{7{x^4}}}{4} + C.\)
\(f\left( 1 \right) = 0 \Rightarrow - \frac{7}{4} + C = 0 \Rightarrow C = \frac{7}{4}.\)
Do đó \(f\left( x \right) = - \frac{{7{x^4}}}{4} + \frac{7}{4}.\)
Vậy \(\int\limits_0^1 {f\left( x \right)dx} = \int\limits_0^1 {\left( { - \frac{{7{x^4}}}{4} + \frac{7}{4}} \right)dx = \frac{7}{5}} .\)
Chọn C.Cho \(\int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + 2\cos x} \right)}}{{{{\cos }^2}x}}} dx = a\ln 3 + b\ln 2 + c\pi \) với \(a,b,c\) là các số hữu tỉ.
Giá trị của abc bằng
Cho \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 6;6} \right]\).
Biết rằng \(\int\limits_{ - 1}^2 {f\left( x \right)dx = 8} \) và \(\int\limits_1^3 {f\left( { - 2x} \right)dx = 3.} \)
Tính \(\int\limits_{ - 1}^6 {f\left( x \right)dx} .\)
Biết \(I = \int_0^{\ln 2} {\frac{{dx}}{{{e^x} + 3{e^{ - x}} + 4}}} = \frac{1}{c}\left( {\ln a - \ln b + \ln c} \right)\), với \(a,b,c\) là các số nguyên tố.
Giá trị của \(P = 2a - b + c\) là
Biết \(\int\limits_0^{\frac{\pi }{2}} {\frac{{\cos x}}{{{{\sin }^2}x + 3\sin x + 2}}dx} = a\ln 2 + b\ln 3,\) với \(a,b\) là các số nguyên.
Giá trị của \(P = 2a + b\) là