Hướng dẫn giải
Ta có \(\int\limits_1^2 {\frac{{5x + 6}}{{{x^2} + 5x + 6}}dx = \int\limits_1^2 {\frac{{5x + 6}}{{\left( {x + 2} \right)\left( {x + 3} \right)}}dx} = \int\limits_1^2 {\left( {\frac{9}{{x + 3}} - \frac{4}{{x + 2}}} \right)dx} } \)
\( = \left( {9\ln \left| {x + 3} \right| - 4\ln \left| {x + 2} \right|} \right)\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. = 9\ln 5 + 4\ln 3 - 26\ln 2.\)
Suy ra \(a = - 26,b = 4,c = 9.\) Vậy \(S = a + bc = - 26 + 4.9 = 10.\)
Chọn B.
Cho \(\int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + 2\cos x} \right)}}{{{{\cos }^2}x}}} dx = a\ln 3 + b\ln 2 + c\pi \) với \(a,b,c\) là các số hữu tỉ.
Giá trị của abc bằng
Cho \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 6;6} \right]\).
Biết rằng \(\int\limits_{ - 1}^2 {f\left( x \right)dx = 8} \) và \(\int\limits_1^3 {f\left( { - 2x} \right)dx = 3.} \)
Tính \(\int\limits_{ - 1}^6 {f\left( x \right)dx} .\)
Biết \(\int\limits_0^{\frac{\pi }{2}} {\frac{{\cos x}}{{{{\sin }^2}x + 3\sin x + 2}}dx} = a\ln 2 + b\ln 3,\) với \(a,b\) là các số nguyên.
Giá trị của \(P = 2a + b\) là
Biết \(I = \int_0^{\ln 2} {\frac{{dx}}{{{e^x} + 3{e^{ - x}} + 4}}} = \frac{1}{c}\left( {\ln a - \ln b + \ln c} \right)\), với \(a,b,c\) là các số nguyên tố.
Giá trị của \(P = 2a - b + c\) là