Hướng dẫn giải
Xét \(I = \int\limits_0^2 {2x\ln \left( {1 + x} \right)dx.} \)
Đặt \(\left\{ \begin{array}{l}u = \ln \left( {1 + x} \right)\\dv = 2xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \frac{1}{{1 + x}}dx\\v = {x^2} - 1\end{array} \right.\) .
Ta có \(I = \left( {{x^2} - 1} \right)\ln \left( {x + 1} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle2\atop\scriptstyle}} \right. - \int\limits_0^2 {\frac{{{x^2} - 1}}{{x + 1}}dx} \)
\( = 3\ln 3 - \int\limits_0^2 {\left( {x - 1} \right)dx} = 3\ln 3 - \left( {\frac{{{x^2}}}{2} - x} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle2\atop\scriptstyle}} \right. = 3\ln 3.\)
Vậy \(a = 3,b = 3 \Rightarrow 3a + 4b = 21.\)
Chọn B.Cho \(\int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + 2\cos x} \right)}}{{{{\cos }^2}x}}} dx = a\ln 3 + b\ln 2 + c\pi \) với \(a,b,c\) là các số hữu tỉ.
Giá trị của abc bằng
Cho \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 6;6} \right]\).
Biết rằng \(\int\limits_{ - 1}^2 {f\left( x \right)dx = 8} \) và \(\int\limits_1^3 {f\left( { - 2x} \right)dx = 3.} \)
Tính \(\int\limits_{ - 1}^6 {f\left( x \right)dx} .\)
Biết \(\int\limits_0^{\frac{\pi }{2}} {\frac{{\cos x}}{{{{\sin }^2}x + 3\sin x + 2}}dx} = a\ln 2 + b\ln 3,\) với \(a,b\) là các số nguyên.
Giá trị của \(P = 2a + b\) là
Biết \(I = \int_0^{\ln 2} {\frac{{dx}}{{{e^x} + 3{e^{ - x}} + 4}}} = \frac{1}{c}\left( {\ln a - \ln b + \ln c} \right)\), với \(a,b,c\) là các số nguyên tố.
Giá trị của \(P = 2a - b + c\) là