Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa điều kiện \(f\left( x \right) + f\left( { - x} \right) = 2\cos x,\) với \(\forall x \in \mathbb{R}\).
Giá trị của \(N = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {f\left( x \right)dx} \) là
Hướng dẫn giải
Ta có \(N = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {f\left( x \right)dx} = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {f\left( { - x} \right)dx} \)
Suy ra \(2N = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {2\cos xdx.} \)
Vậy \(N = 2\int\limits_0^{\frac{\pi }{2}} {\cos xdx} = 2\sin x\left| {_{\scriptstyle\atop\scriptstyle0}^{\frac{\pi }{2}} = 2.} \right.\)
Chọn D.
Cho \(\int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + 2\cos x} \right)}}{{{{\cos }^2}x}}} dx = a\ln 3 + b\ln 2 + c\pi \) với \(a,b,c\) là các số hữu tỉ.
Giá trị của abc bằng
Cho \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 6;6} \right]\).
Biết rằng \(\int\limits_{ - 1}^2 {f\left( x \right)dx = 8} \) và \(\int\limits_1^3 {f\left( { - 2x} \right)dx = 3.} \)
Tính \(\int\limits_{ - 1}^6 {f\left( x \right)dx} .\)
Biết \(\int\limits_0^{\frac{\pi }{2}} {\frac{{\cos x}}{{{{\sin }^2}x + 3\sin x + 2}}dx} = a\ln 2 + b\ln 3,\) với \(a,b\) là các số nguyên.
Giá trị của \(P = 2a + b\) là
Biết \(I = \int_0^{\ln 2} {\frac{{dx}}{{{e^x} + 3{e^{ - x}} + 4}}} = \frac{1}{c}\left( {\ln a - \ln b + \ln c} \right)\), với \(a,b,c\) là các số nguyên tố.
Giá trị của \(P = 2a - b + c\) là
Cho \(F\left( x \right)\) là nguyên hàm của hàm số \(f\left( x \right) = \frac{{\ln x}}{x}\). Giá trị của \(F\left( e \right) - F\left( 1 \right)\) bằng