Hướng dẫn giải
Đặt \(t = a - x \Rightarrow dt = - dx.\) Đổi cận \(x = 0 \Rightarrow t = a;x = a \Rightarrow t = 0.\)
Khi đó \(I = \int\limits_0^a {\frac{1}{{1 + f\left( {a - t} \right)}}dt = \int\limits_0^a {\frac{1}{{1 + f\left( {a - x} \right)}}dx} = \int\limits_0^a {\frac{1}{{1 + \frac{1}{{f\left( x \right)}}}}} dx = \int\limits_0^a {\frac{{f\left( x \right)}}{{1 + f\left( x \right)}}dx.} } \)
\( \Rightarrow 2I = \int\limits_0^a {\frac{1}{{1 + f\left( x \right)}}dx + \int\limits_0^a {\frac{{f\left( x \right)}}{{1 + f\left( x \right)}}dx} = \int\limits_0^a {1.dx = a.} } \) Vậy \(I = \frac{a}{2}.\)
Chọn B.
Cho \(\int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + 2\cos x} \right)}}{{{{\cos }^2}x}}} dx = a\ln 3 + b\ln 2 + c\pi \) với \(a,b,c\) là các số hữu tỉ.
Giá trị của abc bằng
Cho \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 6;6} \right]\).
Biết rằng \(\int\limits_{ - 1}^2 {f\left( x \right)dx = 8} \) và \(\int\limits_1^3 {f\left( { - 2x} \right)dx = 3.} \)
Tính \(\int\limits_{ - 1}^6 {f\left( x \right)dx} .\)
Biết \(\int\limits_0^{\frac{\pi }{2}} {\frac{{\cos x}}{{{{\sin }^2}x + 3\sin x + 2}}dx} = a\ln 2 + b\ln 3,\) với \(a,b\) là các số nguyên.
Giá trị của \(P = 2a + b\) là
Biết \(I = \int_0^{\ln 2} {\frac{{dx}}{{{e^x} + 3{e^{ - x}} + 4}}} = \frac{1}{c}\left( {\ln a - \ln b + \ln c} \right)\), với \(a,b,c\) là các số nguyên tố.
Giá trị của \(P = 2a - b + c\) là