Đáp án C
Phương pháp
Sử dụng công thức tính số hạng thứ n của cấp số cộng \({u_n} = {u_1} + \left( {n - 1} \right)d\)
Cách giải:
Cứ hai cây cách nhau 50m và cây đầu tiên trồng ở đầu đường nên ta coi dãy các cây là một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 0\), công sai \(d = 50\), cây cuối cùng trồng trên đường là số hạng \({u_n}\) của cấp số cộng.
Có \({u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_n} = 0 + \left( {n - 1} \right).50 \Leftrightarrow {u_n} = 50\left( {n - 1} \right)\)
Do \(n \in \mathbb{N}*\) nên \({u_n} \vdots 50\). Lại có \({u_n} \le 5270\) nên \({u_n} = 5270\).
Do đó \(5250 = \left( {n - 1} \right).50 \Leftrightarrow n = 106\). Vậy trồng được tất cả 106 cây và dư ra 20m đường.
Chú ý:
Một số em chỉ lấy \(5270:50 = 105\) dư 20 và chọn ngay B là sai vì quên mất cây đầu tiên trồng ngay đầu đường nên phải cộng thêm 1.
Cho lăng trụ \(ABCD.A'B'C'D'\) có hai đáy là các hình bình hành. Các điểm M, N, P lần lượt là trung điểm của cạnh AD, BC, CC' (tham khảo hình vẽ). Xét các khẳng định sau:
I) Mặt phẳng \(\left( {MNP} \right)\) cắt cạnh \(A'D'\)
II) Mặt phẳng \(\left( {MNP} \right)\) cắt cạnh \(DD'\) tại trung điểm của \(DD'\)
III) Mặt phẳng \(\left( {MNP} \right)\) song song với mặt phẳng \(\left( {ABC'D'} \right)\)
Trong các khẳng định trên, số khẳng định đúng là
Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \({u_1} = 6\) và \({u_{n + 1}} = \frac{1}{9}\left( {u_n^2 - {u_n} + 25} \right)\) với mọi số tự nhiên \(n \ge 1\). Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
I) \(\left( {{u_n}} \right)\) là dãy số không tăng, không giảm.
II) \(\frac{1}{{{u_1} + 4}} = \frac{1}{{{u_1} - 5}} - \frac{1}{{{u_2} - 5}}\)
III) \(\frac{1}{{{u_1} + 4}} + \frac{1}{{{u_2} + 4}} + ... + \frac{1}{{{u_{2018}} + 4}} = 1 - \frac{1}{{{u_{2019}} - 5}}\)
Trong các mệnh đề sau, có bao nhiêu mệnh đề đúng?
I) Hàm số \(y = x + {\mathop{\rm sinx}\nolimits} \) tuần hoàn với chu kì \(T = 2\pi \)
II) Hàm số \(y = x\cos x\) là hàm số lẻ
III) Hàm số \(y = \tan x\) đồng biến trên từng khoảng xác định