Đáp án D
Phương pháp:
Phép vị tự tâm A tỉ số \(k\): \({V_{\left( {I;k} \right)}}\left( M \right) = M' \Leftrightarrow \overrightarrow {IM'} = k\overrightarrow {IM} \)
Cách giải:
Vì G là trọng tâm tam giác ABC nên \(\frac{{GM}}{{GA}} = \frac{{GN}}{{GB}} = \frac{{GP}}{{GC}} = \frac{1}{2}\) hay
\(\overrightarrow {GM} = - \frac{1}{2}\overrightarrow {GA} ;\,\overrightarrow {GN} = - \frac{1}{2}\overrightarrow {GB} ;\,\overrightarrow {GP} = - \frac{1}{2}\overrightarrow {GC} \)
Xét phép vị tự tâm G tỉ số \( - \frac{1}{2}\)ta có \({V_{\left( {G; - \frac{1}{2}} \right)}}\left( A \right) = M,\,{V_{\left( {G; - \frac{1}{2}} \right)}}\left( B \right) = N,\,{V_{\left( {G; - \frac{1}{2}} \right)}}\left( C \right) = P\) (do
\(\overrightarrow {GM} = - \frac{1}{2}\overrightarrow {GA} ;\,\overrightarrow {GN} = - \frac{1}{2}\overrightarrow {GB} ;\,\overrightarrow {GP} = - \frac{1}{2}\overrightarrow {GC} \) (cmt))
Hay phép vị tự tâm G tỉ số \( - \frac{1}{2}\) biến tam giác ABC thành tam giác MNP.
Cho lăng trụ \(ABCD.A'B'C'D'\) có hai đáy là các hình bình hành. Các điểm M, N, P lần lượt là trung điểm của cạnh AD, BC, CC' (tham khảo hình vẽ). Xét các khẳng định sau:
I) Mặt phẳng \(\left( {MNP} \right)\) cắt cạnh \(A'D'\)
II) Mặt phẳng \(\left( {MNP} \right)\) cắt cạnh \(DD'\) tại trung điểm của \(DD'\)
III) Mặt phẳng \(\left( {MNP} \right)\) song song với mặt phẳng \(\left( {ABC'D'} \right)\)
Trong các khẳng định trên, số khẳng định đúng là
Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \({u_1} = 6\) và \({u_{n + 1}} = \frac{1}{9}\left( {u_n^2 - {u_n} + 25} \right)\) với mọi số tự nhiên \(n \ge 1\). Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
I) \(\left( {{u_n}} \right)\) là dãy số không tăng, không giảm.
II) \(\frac{1}{{{u_1} + 4}} = \frac{1}{{{u_1} - 5}} - \frac{1}{{{u_2} - 5}}\)
III) \(\frac{1}{{{u_1} + 4}} + \frac{1}{{{u_2} + 4}} + ... + \frac{1}{{{u_{2018}} + 4}} = 1 - \frac{1}{{{u_{2019}} - 5}}\)
Trong các mệnh đề sau, có bao nhiêu mệnh đề đúng?
I) Hàm số \(y = x + {\mathop{\rm sinx}\nolimits} \) tuần hoàn với chu kì \(T = 2\pi \)
II) Hàm số \(y = x\cos x\) là hàm số lẻ
III) Hàm số \(y = \tan x\) đồng biến trên từng khoảng xác định