Phương pháp:
- Tìm ĐKXĐ
- Biến đổi phương trình về phương trình cơ bản để giải.
Cách giải:
ĐKXĐ: \(1 - 2\sin x \ne 0 \Leftrightarrow \sin x \ne \frac{1}{2} \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{6} + k2\pi \\x \ne \frac{{5\pi }}{6} + k2\pi \end{array} \right.,\,k \in \mathbb{Z}\).
Khi đó:
\[\frac{{\cos \left( {\frac{{7\pi }}{2} - 2x} \right) - \sqrt 3 \cos \left( {2x - 3\pi } \right) + 2\cos x}}{{1 - 2\sin x}} = 0\]
\[ \Leftrightarrow \cos \left( {3\pi + \frac{\pi }{2} - 2x} \right) - \sqrt 3 \cos \left( {2x - 3\pi } \right) + 2\cos x = 0\]
\[ \Leftrightarrow - \cos \left( {\frac{\pi }{2} - 2x} \right) + \sqrt 3 \cos 2x + 2\cos x = 0\]
\[ \Leftrightarrow - \sin 2x + \sqrt 3 \cos 2x + 2cosx = 0\]
\[ \Leftrightarrow \sin 2x - \sqrt 3 \cos 2x = 2\cos x\]
\[ \Leftrightarrow \frac{1}{2}\sin 2x - \frac{{\sqrt 3 }}{2}\cos 2x = \cos x\]
\[ \Leftrightarrow \sin \frac{\pi }{6}.\sin 2{\rm{x}} - \cos \frac{\pi }{6}.\cos 2x = \cos x\]
\[ \Leftrightarrow - \cos \left( {2x + \frac{\pi }{6}} \right) = \cos x \Leftrightarrow \cos \left( {2x - \frac{{5\pi }}{6}} \right) = \cos x\]
\[ \Leftrightarrow \left[ \begin{array}{l}2x - \frac{{5\pi }}{6} = x + k2\pi \\2x - \frac{{5\pi }}{6} = - x + k2\pi \end{array} \right.,\,k \in \mathbb{Z} \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{6} + k2\pi \\x = \frac{{5\pi }}{{18}} + k\frac{{2\pi }}{3}\end{array} \right.,\,\,k \in \mathbb{Z}\]
Kết hợp ĐKXĐ, suy ra: Phương trình đã cho có nghiệm \[x = \frac{{5\pi }}{{18}} + k\frac{{2\pi }}{3},\,\,k \in \mathbb{Z}\].
Cho hình chóp S.ABCD có đáy là hình thang ABCD với đáy lớn \(BC = 2{\rm{a}}\) và \(A{\rm{D}} = AB = a\). Mặt bên SAD là tam giác đều. Gọi M là điểm bất kì thuộc cạnh AB. Mặt phẳng \(\left( \alpha \right)\) đi qua M và song song với SA, BC, cắt CD, SC, SB lần lượt tại N, P, Q.
a) Chứng minh: \(PN//\left( {SA{\rm{D}}} \right)\).
b) Gọi E là giao điểm của MQ và NP. Chứng minh rằng E luôn nằm trên một đường thẳng cố định.
c) Giả sử \(AM = x\,\left( {0 < x < a} \right)\). Tính diện tích thiết diện tạo bởi mặt phẳng \(\left( \alpha \right)\) với hình chóp S.ABCD theo a và x. Tìm vị trí của M để thiết diện đạt giá trị lớn nhất?
Giải các phương trình sau:
a) \(\frac{3}{{{{\sin }^2}x}} - 2\sqrt 3 \cot x - 6 = 0\)