Thứ năm, 09/01/2025
IMG-LOGO

Câu hỏi:

19/07/2024 63

Cho hình lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(4a\), hình chiếu của \(A'\) trên đáy trùng với trọng tâm \(G\) của tam giác \(ABC\), góc giữa cạnh bên và đáy bằng \({30^0}\). Tính thể tích khối lăng trụ \(ABC.A'B'C'\)

A. \(\frac{{16\sqrt 3 {a^3}}}{3}\).

B. \(16{a^3}\sqrt 3 \).

Đáp án chính xác

C.\(\frac{{4\sqrt 3 {a^3}}}{3}\).

D. \(\frac{{4\sqrt 3 {a^3}}}{9}\).

Trả lời:

verified Giải bởi Vietjack

Lời giải

Media VietJack

Gọi \(E\) là trung điểm của \(BC\).
Ta có
+) \(CE = \frac{1}{2}BC = 2a\), \(AE = \sqrt {A{C^2} - B{C^2}} = \sqrt {16{a^2} - 4{a^2}} = 2a\sqrt 3 \)
+) \({S_{ABC}} = \frac{1}{2}AE.BC = 4{a^2}\sqrt 3 \)
+) \(AG = \frac{2}{3}AE = \frac{{4a\sqrt 3 }}{3}\)
Vì \(A'G \bot (ABC)\)nên \(AG\) là hình chiếu vuông góc của \[A'A\] trên đáy,do đó góc giữa \(AA'\) và đáy là góc .
+) \(A'G = AG.\tan {60^0} = 4a\)
+) \({V_{ABC.A'B'C'}} = {S_{ABC}}.A'G = 16{a^3}\sqrt 3 \)

Câu trả lời này có hữu ích không?

1

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(f\left( x \right) = \frac{{16\sin x - 4}}{{16{{\sin }^2}x - 4\sin x + 9}}\). Gọi \(M\) là giá trị lớn nhất và \(m\) là giá trị nhỏ nhất của hàm số đã cho. Chọn mệnh đề đúng.

Xem đáp án » 26/06/2023 119

Câu 2:

Để thiết kế một chiếc bể cá hình hộp chữ nhật có chiều cao là \(60\,{\rm{cm}}\), thể tích \[96000\,{\rm{c}}{{\rm{m}}^3}\]. Người thợ dùng loại kính để sử dụng làm mặt bên có giá thành \(70000\)VNĐ/m2 và loại kính để làm mặt đáy có giá thành \(100000\) VNĐ/m2. Tính chi phí thấp nhất để hoàn thành bể cá.

Xem đáp án » 26/06/2023 117

Câu 3:

Biết đồ thị hàm số \(y = {x^3} - 3x + 1\) có hai điểm cực trị \(A\), \(B\). Khi đó phương trình đường thẳng \(AB\)

Xem đáp án » 26/06/2023 116

Câu 4:

Cho hình lập phương \(ABCD.A'B'C'D'\), khoảng cách từ \(C'\) đến mặt phẳng \(\left( {A'BD} \right)\) bằng \(\frac{{4a\sqrt 3 }}{3}.\) Tính theo \(a\) thể tích khối lập phương \(ABCD.A'B'C'D'\,.\)

Xem đáp án » 26/06/2023 114

Câu 5:

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\)\(AB = a\)có thể tích bằng\(\frac{{{a^3}\sqrt 6 }}{4}\). Góc giữa hai đường thẳng \(AB'\)\(BC'\) bằng

Xem đáp án » 26/06/2023 109

Câu 6:

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 2020\,;\,2020} \right]\)để đồ thị hàm số \(y = \frac{{x + 2}}{{\sqrt {{x^2} - 2x + m} }}\) có hai đường tiệm cận đứng?

Xem đáp án » 26/06/2023 103

Câu 7:

Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \frac{{x - 6}}{{x + 2}}\), biết tiếp tuyến song song với đường thẳng \(d:y = 2x + 13\).

Xem đáp án » 26/06/2023 102

Câu 8:

Cho các số thực \(x\), \(y\) thỏa mãn \({x^2} - xy + {y^2} = 2\). Tìm giá trị nhỏ nhất của biểu thức \(P = {x^2} + xy + {y^2}\).

Xem đáp án » 26/06/2023 101

Câu 9:

Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^4} - 2m{x^2} + 2020\) đồng biến trên khoảng \(\left( {1\,; + \infty } \right)\).

Xem đáp án » 26/06/2023 97

Câu 10:

Tìm tất cả các giá trị thực của tham số \(m\) sao cho đồ thị của hàm số \(y = - {x^4} + 2\left( {m + 1} \right){x^2} - {m^2}\) có ba điểm cực trị tạo thành một tam giác vuông cân.

Xem đáp án » 26/06/2023 89

Câu 11:

Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho hàm số \(f\left( x \right) = \frac{1}{3}{x^3} + m{x^2} + 4x + 2020\) đồng biến trên \(\mathbb{R}\)?

Xem đáp án » 26/06/2023 88

Câu 12:

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ:

Media VietJack

Hàm số \[y = f\left( {{x^2} - 2} \right)\] nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 26/06/2023 84

Câu 13:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ.

Media VietJack

Số đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} - 1}}{{{f^2}\left( x \right) - 4f\left( x \right)}}\) là

Xem đáp án » 26/06/2023 81

Câu 14:

Cho khối lăng trụ \[ABC.A'B'C'\] có thể tích bằng 2020. Gọi \[M,N\] lần lượt là trung điểm của \[AA'\]; \[BB'\]và điểm \(P\) nằm trên cạnh \(CC'\)sao cho \[PC = 3PC'\]. Thể tích của khối đa diện lồi có các đỉnh là các điểm \[A,B,C,M,N,P\] bằng

Xem đáp án » 26/06/2023 78

Câu 15:

Tìm tất cả các giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^3} - 3{x^2} - m\) cắt trục hoành tại đúng một điểm.

Xem đáp án » 26/06/2023 77

Câu hỏi mới nhất

Xem thêm »
Xem thêm »