Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau
Số nghiệm thực của phương trình \(3f\left( x \right) - 5 = 0\) là
Lời giải
Chọn A
Ta có \(3f\left( x \right) - 5 = 0 \Leftrightarrow f\left( x \right) = \frac{5}{3}\left( * \right)\).
Số nghiệm của \(\left( * \right)\) là số hoành độ giao điểm của đồ thị hàm số \(y = f\left( x \right)\) với đường thẳng \(y = \frac{5}{3}\). Dựa vào bảng biến thiên, ta thấy đồ thị hàm số \(y = f\left( x \right)\) cắt đường thẳng \(y = \frac{5}{3}\) tại bốn điểm phân biệt. Suy ra \(\left( * \right)\) có bốn nghiệm phân biệt.
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ.
Số giá trị nguyên của tham số \(m\) để phương trình \({f^2}\left( {{\rm{cos}}x} \right) + \left( {3 - m} \right)f\left( {{\rm{cos}}x} \right) + 2m - 10 = 0\) có đúng 4 nghiệm phân biệt thuộc đoạn \(\left[ { - \frac{\pi }{3};\pi } \right]\) là