Lời giải
Chọn A
Do \(\left\{ {\begin{array}{*{20}{c}}{MN\;{\rm{//}}\;BC}\\{\left( \alpha \right) \cap \left( {SBC} \right) = PQ}\end{array}} \right.\) \( \Rightarrow PQ\;{\rm{//}}\;BC\).
\(\frac{{{V_{S.MNQ}}}}{V} + \frac{{{V_{S.NPQ}}}}{V} = \frac{{{V_1}}}{V}\) \( \Leftrightarrow \)\(\frac{{{V_{S.MNQ}}}}{{2{V_{S.ABD}}}} + \frac{{{V_{S.NPQ}}}}{{2{V_{S.BCS}}}} = \frac{1}{2}\) \( \Leftrightarrow \frac{{SM}}{{SA}}.\frac{{SN}}{{SD}}.\frac{{SQ}}{{SB}} + \frac{{SP}}{{SC}}.\frac{{SN}}{{SD}}.\frac{{SQ}}{{SB}} = 1\) \( \Leftrightarrow \frac{x}{4} + \frac{{{x^2}}}{2} = 1\) \( \Leftrightarrow 2{x^2} + x - 4 = 0\) \( \Leftrightarrow x = \frac{{ - 1 + \sqrt {33} }}{4}\) (vì \(x > 0\)).
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ.
Số giá trị nguyên của tham số \(m\) để phương trình \({f^2}\left( {{\rm{cos}}x} \right) + \left( {3 - m} \right)f\left( {{\rm{cos}}x} \right) + 2m - 10 = 0\) có đúng 4 nghiệm phân biệt thuộc đoạn \(\left[ { - \frac{\pi }{3};\pi } \right]\) là