Lời giải
Chọn A
Ta có \[y' = 3a{x^2} + 2bx + c\].
Đồ thị hàm số \[y = a{x^3} + b{x^2} + cx + d,\,a \ne 0\] có hai điểm cực trị nằm về hai phía của trục\(Oy\) thì \(y'\) có hai nghiệm trái dấu \( \Leftrightarrow ac < 0\) do \[a > 0 \Rightarrow c < 0 \Rightarrow a > 0 > c\].
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ.
Số giá trị nguyên của tham số \(m\) để phương trình \({f^2}\left( {{\rm{cos}}x} \right) + \left( {3 - m} \right)f\left( {{\rm{cos}}x} \right) + 2m - 10 = 0\) có đúng 4 nghiệm phân biệt thuộc đoạn \(\left[ { - \frac{\pi }{3};\pi } \right]\) là