Lời giải
Chọn A
Đặt \(t = {\rm{si}}{{\rm{n}}^2}x \Rightarrow t \in \left[ {0;1} \right]\), khi đó yêu cầu bài toán trở thành tìm \(m\) để phương trình \(f\left( t \right) = m\) có nghiệm \(t\) trên đoạn \(\left[ {0;1} \right]\). Dựa vào đồ thị hàm số ta suy ra \(m \in \left[ { - 1;1} \right]\).
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ.
Số giá trị nguyên của tham số \(m\) để phương trình \({f^2}\left( {{\rm{cos}}x} \right) + \left( {3 - m} \right)f\left( {{\rm{cos}}x} \right) + 2m - 10 = 0\) có đúng 4 nghiệm phân biệt thuộc đoạn \(\left[ { - \frac{\pi }{3};\pi } \right]\) là