Tìm các giá trị của m để phương trình có nghiệm
\(2{x^2} - \left( {4m + 3} \right)x + 2{m^2} - 1 = 0 & (1)\)
\(\Delta = {\left( {4m + 3} \right)^2} - 4.2\left( {2{m^2} - 1} \right) = 24m + 17\)
Để \(\left( 1 \right)\)có nghiệm thì \(\Delta \ge 0 \Leftrightarrow 24m + 17 \ge 0 \Leftrightarrow m \ge \frac{{ - 17}}{{24}}\)
Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi E, D lần lượt là giao điểm của các tia phân giác trong và ngoài của hai góc B và C. Đường thẳng ED cắt BC tại I cắt cung nhỏ BC ở M. Chứng minh :
a) Ba điểm A, E, D thẳng hàng
b) Tứ giác BECD nội tiếp được trong đường tròn
c) BI.IC = ID.IE
4. Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng số đo của góc nội tiếp