Lời giải
Gọi ba số viết ra là a, b, c không gian mẫu n (W) = 173
Phân đoạn [1; 17] thành ba tập:
X = {3; 6; 9; 12; 15} chia hết cho 3 có 5 phần tử
Y = {1; 4; 7; 10; 13; 16} chia cho 3 dư 1 có 6 phần tử
Z = {2; 5; 8; 11; 14; 17} chia cho 3 dư 2 có 6 phần tử
• TH1: Cả ba số cùng thuộc 1 trong 3 tập có số cách viết là: 63 + 53 + 63.
• TH2: Ba số thuộc 3 tập khác nhau, số cách viết là 3!.6.5.6.
Xác suất là: \(P\left( A \right) = \frac{{{6^3} + {5^3} + {5^3} + 3!\,\,.\,\,6\,\,.\,\,5\,\,.\,\,6}}{{{{17}^3}}} = \frac{{1\,\,637}}{{4\,\,913}}\).
Cho các khẳng định:
(I): Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất.
(II): Hai mặt phẳng có một điểm chung thì chúng có vô số điểm chung khác nữa.
(III): Nếu ba điểm phân biệt cùng thuộc hai mặt phẳng thì chúng thẳng hàng.
Số khẳng định sai trong các khẳng định trên là:
Tìm công thức hàm số bậc hai, biết:
a) Đồ thị hàm số đi qua 3 điểm A(1; −3), B(0; −2), C(2; −10).
b) Đồ thị hàm số có trục đối xứng là đường thẳng x = 3, cắt trục tung tại điểm có tung độ bằng −16 và một trong hai giao điểm với trục hoành có hoành độ là −2.
Cho x, y không âm thỏa mãn: x2 + y2 = 2. Tìm GTNN, GTLN của
\(A = \frac{{{x^2} + {y^2} + 1}}{{xy + 1}}\).
Cho tam giác ABC có AB = AC và D là trung điểm của BC. Gọi E là trung điểm của AC, trên tia đối của tia EB lấy điểm M sao cho EM = EB.
a) Chứng minh DABD = DACD.
b) Chứng minh rằng AM = 2.BD.
c) Tính số đo \[\widehat {MAD}\].