Lời giải
Ta có: \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{b^2} + {c^2}} \)
Do AD là phân giác trong của \(\widehat {BAC}\)
\( \Rightarrow BD = \frac{{AB}}{{AC}}\,.\,DC = \frac{c}{b}\,.\,DC = \frac{c}{{b + c}}\,.\,BC = \frac{{c\sqrt {{b^2} + {c^2}} }}{{b + c}}\)
Theo định lí hàm cosin, ta có:
\(B{D^2} = A{B^2} + A{D^2} - 2AB\,.\,AD\,.\,\cos \widehat {ABD}\)
\( \Leftrightarrow \frac{{{c^2}\left( {{b^2} + {c^2}} \right)}}{{{{\left( {b + c} \right)}^2}}} = {c^2} + A{D^2} - 2c\,.\,AD\,.\,\cos 45^\circ \)
\( \Rightarrow A{D^2} - c\sqrt 2 \,.\,AD + \left( {{c^2} - \frac{{{c^2}\left( {{b^2} + {c^2}} \right)}}{{{{\left( {b + c} \right)}^2}}}} \right) = 0\)
\( \Leftrightarrow A{D^2} - c\sqrt 2 \,.\,AD + \frac{{2b{c^3}}}{{{{\left( {b + c} \right)}^2}}} = 0\)
\( \Rightarrow AD = \frac{{\sqrt 2 bc}}{{b + c}}\) hay \({\ell _a} = \frac{{\sqrt 2 bc}}{{b + c}}\).
Cho các khẳng định:
(I): Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất.
(II): Hai mặt phẳng có một điểm chung thì chúng có vô số điểm chung khác nữa.
(III): Nếu ba điểm phân biệt cùng thuộc hai mặt phẳng thì chúng thẳng hàng.
Số khẳng định sai trong các khẳng định trên là:
Tìm công thức hàm số bậc hai, biết:
a) Đồ thị hàm số đi qua 3 điểm A(1; −3), B(0; −2), C(2; −10).
b) Đồ thị hàm số có trục đối xứng là đường thẳng x = 3, cắt trục tung tại điểm có tung độ bằng −16 và một trong hai giao điểm với trục hoành có hoành độ là −2.
Cho x, y không âm thỏa mãn: x2 + y2 = 2. Tìm GTNN, GTLN của
\(A = \frac{{{x^2} + {y^2} + 1}}{{xy + 1}}\).
Cho tam giác ABC có AB = AC và D là trung điểm của BC. Gọi E là trung điểm của AC, trên tia đối của tia EB lấy điểm M sao cho EM = EB.
a) Chứng minh DABD = DACD.
b) Chứng minh rằng AM = 2.BD.
c) Tính số đo \[\widehat {MAD}\].