Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

14/07/2024 94

Tính \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2{\rm{x}}} \cdot \sqrt[3]{{1 + 3{\rm{x}}}} \cdot \sqrt[4]{{1 + 4{\rm{x}}}} - 1}}{x}\).


A. \(\frac{{23}}{2}\)



B. 24



C. \(\frac{3}{2}\)



D. 3.


Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có: \(\sqrt {1 + 2{\rm{x}}} \cdot \sqrt[3]{{1 + 3{\rm{x}}}} \cdot \sqrt[4]{{1 + 4{\rm{x}}}} - 1\)

\( = \sqrt {1 + 2{\rm{x}}} - \sqrt {1 + 2{\rm{x}}} + \sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}} - \sqrt {1 + 2{\rm{x}}} \cdot \sqrt[3]{{1 + 3{\rm{x}}}} + \sqrt {1 + 2{\rm{x}}} \cdot \sqrt[3]{{1 + 3{\rm{x}}}} \cdot \sqrt[4]{{1 + 4{\rm{x}}}} - 1\)\( = \left( {\sqrt {1 + 2{\rm{x}}} - 1} \right) + \sqrt {1 + 2{\rm{x}}} \cdot \left( {\sqrt[3]{{1 + 3{\rm{x}}}} - 1} \right) + \sqrt {1 + 2{\rm{x}}} \cdot \sqrt[3]{{1 + 3{\rm{x}}}}\left( {1 + \sqrt[4]{{1 + 4{\rm{x}}}}} \right)\)

Suy ra: \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\sqrt[4]{{1 + 4{\rm{x}}}} - 1}}{x}\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\frac{{\sqrt[3]{{1 + 3{\rm{x}}}} - 1}}{x}} \right) + \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sqrt {1 + 2{\rm{x}}} - 1}}{x}} \right) + \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\frac{{\sqrt[4]{{1 + 4{\rm{x}}}} - 1}}{x}} \right)\)

Ta có: \(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sqrt {1 + 2{\rm{x}}} - 1}}{x}} \right) = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt {1 + 2{\rm{x}}} - 1} \right).\left( {\sqrt {1 + 2{\rm{x}}} + 1} \right)}}{{x\left( {\sqrt {1 + 2{\rm{x}}} + 1} \right)}}\)

\( = \mathop {\lim }\limits_{x \to 0} \frac{{2{\rm{x}}}}{{x\left( {\sqrt {1 + 2{\rm{x}}} + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{2}{{\left( {\sqrt {1 + 2{\rm{x}}} + 1} \right)}} = \frac{2}{{1 + 1}} = 1\)

Ta có:

\(\mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\frac{{\sqrt[3]{{1 + 3{\rm{x}}}} - 1}}{x}} \right)\)

\( = \mathop {\lim }\limits_{x \to 0} \left\{ {\sqrt {1 + 2{\rm{x}}} .\frac{{\left( {\sqrt[3]{{1 + 3{\rm{x}}}} - 1} \right)\left[ {{{\left( {\sqrt[3]{{1 + 3{\rm{x}}}}} \right)}^2} + \sqrt[3]{{1 + 3{\rm{x}}}} + 1} \right]}}{{x\left[ {{{\left( {\sqrt[3]{{1 + 3{\rm{x}}}}} \right)}^2} + \sqrt[3]{{1 + 3{\rm{x}}}} + 1} \right]}}} \right\}\)

\( = \mathop {\lim }\limits_{x \to 0} \left\{ {\sqrt {1 + 2{\rm{x}}} .\frac{{3{\rm{x}}}}{{x\left[ {{{\left( {\sqrt[3]{{1 + 3{\rm{x}}}}} \right)}^2} + \sqrt[3]{{1 + 3{\rm{x}}}} + 1} \right]}}} \right\}\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{3\sqrt {1 + 2{\rm{x}}} }}{{\left[ {{{\left( {\sqrt[3]{{1 + 3{\rm{x}}}}} \right)}^2} + \sqrt[3]{{1 + 3{\rm{x}}}} + 1} \right]}}} \right) = \frac{{3.1}}{{1 + 1 + 1}} = 1\)

Ta có: \(\mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\frac{{\sqrt[4]{{1 + 4{\rm{x}}}} - 1}}{x}} \right)\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\frac{{\left( {\sqrt[4]{{1 + 4{\rm{x}}}} - 1} \right)\left[ {{{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^2} + \left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right) + 1} \right]}}{{x\left[ {{{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^2} + \left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right) + 1} \right]}}} \right)\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\frac{{4{\rm{x}}}}{{x\left[ {{{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^2} + \left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right) + 1} \right]}}} \right)\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{4\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}}}{{\left[ {{{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^2} + \left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right) + 1} \right]}}} \right) = \frac{{4.1.1}}{{1 + 1 + 1 + 1}} = 1\)

Suy ra \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\sqrt[4]{{1 + 4{\rm{x}}}} - 1}}{x} = 1 + 1 + 1 = 3\)

Vậy ta chọn đáp án D.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ một hộp chứa sáu quả cầu trắng và bốn quả cầu đen, lấy ngẫu nhiên đồng thời bốn quả, tính xác suất sao cho:

a) Bốn quả lấy ra cùng màu;

b) Có ít nhất một quả màu trắng.

Xem đáp án » 02/10/2023 176

Câu 2:

Trong mặt phẳng (Oxy) cho A(1; 2), B(4; 1), C(5; 4). Tính \(\widehat {BAC}\).

Xem đáp án » 02/10/2023 166

Câu 3:

Cho tam giác ABC và đặt \(\overrightarrow a = \overrightarrow {BC} ,\overrightarrow b = \overrightarrow {AC} \). Cặp vectơ nào sau đây cùng phương:

Xem đáp án » 02/10/2023 164

Câu 4:

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân tại A, AB = AC = a và \[{\rm{AA}}' = a\sqrt 2 \]. Thể tích khối cầu ngoại tiếp hình tứ diện AB’A’C là:

Xem đáp án » 02/10/2023 162

Câu 5:

Cho α và β là hai góc nhọn bất kỳ thỏa mãn α + β = 90°. Khẳng định nào sau đây là đúng?

Xem đáp án » 02/10/2023 161

Câu 6:

Cho phương trình \(\log _2^2x - 2{\log _2}x - \sqrt {m + {{\log }_2}x} = m\) (*). Có bao nhiêu giá trị nguyên của tham số m [–2019; 2019] để phương trình (*) có nghiệm?

Xem đáp án » 02/10/2023 157

Câu 7:

Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

Xem đáp án » 02/10/2023 152

Câu 8:

Với những giá trị nào của m thì đồ thị các hàm số y = 2x + (3 + m) và y = 3x + (5 – m) cắt nhau tại một điểm trên trục tung?

Xem đáp án » 02/10/2023 144

Câu 9:

Gieo ba con súc sắc. Xác suất để được nhiều nhất hai mặt 5 là.

Xem đáp án » 02/10/2023 138

Câu 10:

Cho hình bình hành ABCD tâm O. Khi đó \(\overrightarrow {OB} - \overrightarrow {OA} \) bằng:

Xem đáp án » 02/10/2023 136

Câu 11:

Cho hình bình hành ABCD. M là điểm bất kì, khi đó:

Xem đáp án » 02/10/2023 132

Câu 12:

Cho tanα = 2. Tính giá trị của biểu thức \(G = \frac{{2\sin \alpha + cos\alpha }}{{cos\alpha - 3\sin \alpha }}\).

Xem đáp án » 02/10/2023 132

Câu 13:

Bất phương trình \({\log _{\frac{2}{3}}}\left( {2{{\rm{x}}^2} - x - 1} \right) > 0\) có tập nghiệm là (a; b) (c; d). Tính tổng a + b + c + d.

Xem đáp án » 02/10/2023 128

Câu 15:

Cho tam giác ABC có thể xác định được bao nhiêu vectơ (khác vectơ không) có điểm đầu và điểm cuối là đỉnh A, B, C?

Xem đáp án » 02/10/2023 120

Câu hỏi mới nhất

Xem thêm »
Xem thêm »