Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng đi qua A(–1; 2) và cách B(3; 5) một khoảng bằng 3 là
A. Δ1: y + 2 = 0 và Δ2: 24x – 7y + 38 = 0;
B. Δ1: y – 2 = 0 và Δ2: 24x + 7y + 38 = 0;
C. Δ1: y – 2 = 0 và Δ2: 24x – 7y + 38 = 0;
Hướng dẫn giải:
Đáp án đúng là: C
Gọi phương trình đường thẳng Δ là ax + by + c = 0 (với a2 + b2 ≠ 0).
Điểm A(–1; 2) thuộc vào đường thẳng Δ tức là –a + 2b + c = 0 suy ra c = a – 2b (1)
Khoảng cách từ B(3; 5) đến đường thẳng Δ bằng 3 nên ta có:
Thay (1) vào (2), ta có:
.
Với a = 0, chọn b = 1 suy ra c = –2. Vậy đường thẳng Δ1: y – 2 = 0.
Với 7a + 24b = 0, chọn b = –7 suy ra a = 24, c = 38. Vậy phương trình đường thẳng Δ2: 24x – 7y + 38 = 0.
Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng d song song với d’: 3x + 4y – 1 = 0 và cách d’ một khoảng bằng 2 là
Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d1: 5x + 3y – 3 = 0 và d2: 5x + 3y + 7 = 0 song song nhau. Đường thẳng vừa song song và cách đều với d1, d2 là:
Trên mặt phẳng tọa độ Oxy, cho các điểm A(1; −1) và B(3; 4). Gọi (d) là một đường thẳng bất kì luôn đi qua B. Khi khoảng cách từ A đến đường thẳng (d) đạt giá trị lớn nhất, đường thẳng (d) có phương trình nào dưới đây?
Trong mặt phẳng tọa độ Oxy, cho đường thẳng Δ: x + (m – 1)y + m = 0 (m là tham số bất kỳ) và điểm A(5; 1). Khoảng cách lớn nhất từ điểm A đến Δ bằng
Cho hai điểm A(3; 1), B(4; 0). Đường thẳng không đi qua A, B có phương trình nào sau đây cách đều A và B?
Trong mặt phẳng tọa độ Oxy, tập hợp các điểm cách đường thẳng Δ: 3x – 4y + 2 = 0 một khoảng bằng 2 là hai đường thẳng có phương trình nào sau đây?
Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng d vuông góc với đường thẳng Δ: 2x + y – 1 = 0 và cách điểm M(3; – 2) một khoảng bằng là
Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(0; 1), B(12; 5) và C(–3; 0). Đường thẳng có phương trình nào sau đây cách đều ba điểm A, B và C?
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 1), B(–2; 4) và đường thẳng Δ: mx – y + 3 = 0. Giá trị của tham số m để Δ cách đều hai điểm A, B là