Trong mặt phẳng tọa độ Oxy, cho đường thẳng Δ: x + (m – 1)y + m = 0 (m là tham số bất kỳ) và điểm A(5; 1). Khoảng cách lớn nhất từ điểm A đến Δ bằng
A. ;
B. ;
C. ;
Hướng dẫn giải:
Đáp án đúng là: B
Gọi H(x0; y0) là điểm cố định mà đường thẳng Δ luôn đi qua.
Khi đó x0 + (m – 1)y0 + m = 0 với mọi m
⇔ (y0 + 1)m + x0 – y0 = 0 với mọi m
Suy ra Δ luôn đi qua điểm cố định H(–1; –1).
Với A(5; 1) và H(–1; –1) ta có nên
Gọi M là hình chiếu của A trên Δ, ta có d(A, ∆) = AM ≤ AH.
Giá trị lớn nhất của d(A, Δ) = AH khi M ≡ H, suy ra maxd(A, Δ) = AH = .
Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng d song song với d’: 3x + 4y – 1 = 0 và cách d’ một khoảng bằng 2 là
Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng đi qua A(–1; 2) và cách B(3; 5) một khoảng bằng 3 là
Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d1: 5x + 3y – 3 = 0 và d2: 5x + 3y + 7 = 0 song song nhau. Đường thẳng vừa song song và cách đều với d1, d2 là:
Cho hai điểm A(3; 1), B(4; 0). Đường thẳng không đi qua A, B có phương trình nào sau đây cách đều A và B?
Trên mặt phẳng tọa độ Oxy, cho các điểm A(1; −1) và B(3; 4). Gọi (d) là một đường thẳng bất kì luôn đi qua B. Khi khoảng cách từ A đến đường thẳng (d) đạt giá trị lớn nhất, đường thẳng (d) có phương trình nào dưới đây?
Trong mặt phẳng tọa độ Oxy, tập hợp các điểm cách đường thẳng Δ: 3x – 4y + 2 = 0 một khoảng bằng 2 là hai đường thẳng có phương trình nào sau đây?
Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng d vuông góc với đường thẳng Δ: 2x + y – 1 = 0 và cách điểm M(3; – 2) một khoảng bằng là
Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(0; 1), B(12; 5) và C(–3; 0). Đường thẳng có phương trình nào sau đây cách đều ba điểm A, B và C?
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 1), B(–2; 4) và đường thẳng Δ: mx – y + 3 = 0. Giá trị của tham số m để Δ cách đều hai điểm A, B là