Trong không gian \[Oxyz,\] để phương trình \({x^2} + {y^2} + {z^2} - 2\left( {m + 2} \right)x + 4my + 19m - 6 = 0\) là phương trình mặt cầu thì tất cả các giá trị của tham số \(m\) là
A. \(1 < m < 2.\)
B. \(m < 1\) hoặc \(m > 2.\)
Ta có \({x^2} + {y^2} + {z^2} - 2\left( {m + 2} \right)x + 4my + 19m - 6 = 0\)
\[ \Leftrightarrow {\left( {x - m - 2} \right)^2} + {\left( {y + 2m} \right)^2} + {z^2} = {\left( {m + 2} \right)^2} + 4{m^2} - 19m + 6\]
Yêu cầu bài toán trở thành: \({\left( {m + 2} \right)^2} + 4{m^2} - 19m + 6 > 0\)
\( \Leftrightarrow 5{m^2} - 15m + 10 > 0 \Leftrightarrow m < 1\) hoặc \(m > 2.\) Chọn B.
Cho đường tròn có đường kính bằng 4 và 2 Elip lần lượt nhận 2 đường kính vuông góc với nhau của đường tròn làm trục lớn, trục bé của mỗi Elip đều bằng 1. Diện tích \[S\] phần hình phẳng ở bên trong đường tròn và bên ngoài 2 Elip (phần gạch tô màu trên hình vẽ) gần với kết quả nào nhất trong 4 kết quả dưới đây?
Cho hàm số \(f\left( x \right) = 2{x^2} - 4x - 2.\) Gọi \(S\) là tống tất cả các giá trị của tham số \(m\) để hàm số \(y = g\left( x \right) = \left| {{f^2}\left( x \right) - 2f\left( x \right) + m} \right|\) đạt giá trị lớn nhất trên đoạn \(\left[ { - 1\,;\,\,3} \right]\) bằng 15. Tổng \(S\) thuộc khoảng nào sau đây?
Các hình dưới đây biểu diễn dung dịch nước của ba acid \({\rm{HA}}\,({\rm{A}} = {\rm{X}},{\rm{Y}},{\rm{Z}})\); bỏ qua sự phân li của nước.
Các dung dịch đều có cùng nồng độ, dung dịch nào dẫn điện tốt nhất?
Cho tập hợp \(A = \left[ {4\,;\,\,7} \right]\) và \(B = \left[ {2a + 3b - 1\,;\,\,3a - b + 5} \right]\) với \(a,\,\,b \in \mathbb{R}.\) Khi \(A = B\) thì giá trị biểu thức \(M = {a^2} + {b^2}\) bằng
Tiếp tuyến với đồ thị hàm số \(y = - \frac{1}{4}{x^4} + 2{x^2} + 3\) tại điểm cực tiểu của đồ thị cắt đồ thị ở A, B khác tiếp điểm. Tính độ dài đoạn thẳng AB ?
Trên mặt phẳng với hệ tọa độ Oxy, cho ba đường thẳng lần lượt có phương trình \({d_1}:3x - 4y + 15 = 0,\,\,{d_2}:5x + 2y - 1 = 0\) và \({d_3}:mx - \left( {2m - 1} \right)y + 9m - 13 = 0.\) Tất cả các giá trị của tham số \(m\) để ba đường thẳng đã cho cùng đi qua một điểm là
Hỗn hợp X gồm ba ester đơn chức đều có công thức phân tử \({{\rm{C}}_8}{{\rm{H}}_8}{{\rm{O}}_2}\); chứa vòng benzene (vòng benzene chỉ có một nhóm thế) và một ester hai chức là ethyl phenyl oxalate. Thủy phân hoàn toàn 7,38 gam X trong lượng dư dung dịch \({\rm{NaOH}}\), thấy có \(0,08\;{\rm{mol}}\,\,{\rm{NaOH}}\) phản ứng, thu được \({\rm{m}}\) gam hỗn hợp muối và 2,18 gam hỗn hợp alcohol Y. Cho toàn bộ Y tác dụng với Na dư, thu được 0,4958 lít khí \({{\rm{H}}_2}\)(đkc). Giá trị của m là
Đáp án: ……….
Trong không gian \[Oxyz,\] cho \(\overrightarrow {OA} = \vec i - 2\vec j + 3\vec k\), điểm \(B\left( {3\,;\, - 4\,;\,1} \right)\) và điểm \[C\left( {2\,;\,\,0\,;\,\, - 1} \right).\] Tọa độ trọng tâm của tam giác \[ABC\] là
PHẦN 2: TƯ DUY ĐỊNH TÍNH
Lĩnh vực: Ngữ văn (50 câu – 60 phút)